prove that ∆XTY ~ ∆YTZ
Answers
Answered by
0
Answer:
A=
∣
∣
∣
∣
∣
∣
∣
∣
x+y
z
1
y+z
x
1
z+x
y
1
∣
∣
∣
∣
∣
∣
∣
∣
Applying R
1
→R
1
+R
2
, we get,
A=
∣
∣
∣
∣
∣
∣
∣
∣
x+y+z
z
1
x+y+z
x
1
x+y+z
y
1
∣
∣
∣
∣
∣
∣
∣
∣
A=(x+y+z)
∣
∣
∣
∣
∣
∣
∣
∣
1
z
1
1
x
1
1
y
1
∣
∣
∣
∣
∣
∣
∣
∣
A=(x+y+z)×0=0
Similar questions