Math, asked by BrainlyHelper, 1 year ago

Prove that y=4sinθ/(2+cosθ)-θ is an increasing function of θ in [0,π/2]

Answers

Answered by abhi178
3
given, \bf{y=\frac{4sin\theta}{2+cos\theta}-\theta}
differentiate with respect to \theta,
\bf{\frac{dy}{d\theta}=\frac{(2+cos\theta)\frac{d}{d\theta}(4sin\theta)-4sin\theta\frac{d}{d\theta}(2+cos\theta)}{(2+cos\theta)^2}-\frac{d\theta}{d\theta}}

=\bf{\frac{(2+cos\theta)(4cos\theta)-4sin\theta(-sin\theta)}{(2+cos\theta)^2}-1}

=\bf{\frac{8cos\theta+4cos^2\theta+4sin^2\theta-(2+cos\theta)^2}{(2+cos\theta)^2}}

=\bf{\frac{(8cos\theta+4(sin^2\theta+cos^2\theta)-4-4cos\theta-cos^2\theta}{(2+cos\theta)^2}}

=\bf{\frac{(cos\theta)(4- cos\theta)}{(2+cos\theta)^2}}

we know one thing , cosx < 1
then, (4 - cos\theta) > 0 for all real value of \theta .
so, dy/d\theta depends on cos\theta
in [ 0, π/] , cos\theta > 0
therefore , f(x) is increasing in [0, π/2]
\textbf{\underline{hence proved}}
Similar questions