Math, asked by NANDITHA178, 10 months ago

prove that1 minus tan theta by 1 minus cot theta the whole square is equal to tan square theta​

Answers

Answered by creativity2004
23

Answer:

Answer in attached file

Step-by-step explanation:

Attachments:
Answered by lublana
43

Answer with Step-by-step explanation:

Taking

LHS

(\frac{1-tan\theta}{1-cot\theta})^2

\frac{(1-tan\theta)^2}{(1-cot\theta)^2}

\frac{(1-\frac{sin\theta}{cos\theta})^2}{(1-\frac{cos\theta}{sin\theta})^2}

Using formula tan\theta=\frac{sin\theta}{cos\theta},cot\theta=\frac{cos\theta}{sin\theta}

\frac{(\frac{cos\theta-sin\theta}{cos\theta})^2}{(\frac{sin\theta-cos\theta}{sin\theta})^2}

\frac{(cos\theta-sin\theta)^2\times sin^2\theta}{(-(cos\theta-sin\theta))^2\times cos^2\theta}

\frac{(cos\theta-sin\theta)^2\times sin^2\theta}{(cos\theta-sin\theta)^2\times cos^2\theta}

\frac{sin^2\theta}{cos^2\theta}

tan^2\theta

LHS=RHS

Hence, proved.

#learns more:

https://brainly.in/question/14866213:Answered by Ajsa

Similar questions