prove thatcos20-cos40-cos80
Answers
Answered by
3
Answer:
Given expression = cos 80° cos20° cos40°
= (1/2) 2cos 80° cos20° cos40°
Use 2 cosAcosB = cos(A+B) + cos(A-B) formula.
= (1/2){ cos (80°+20°) + cos(80°–20°)}cos40°
= (1/2)( cos 100° + cos 60°)cos40°
= (1/2) cos 100° cos 40° + (1/2) cos60°cos40°
= (1/2)(1/2)2cos100°cos40° +(1/2)(1/2)cos40°
= (1/4){cos140° + cos60°}+ (1/4)cos40°
= (1/4)(cos140° + cos40°) + (1/4)cos 60°
= (1/4){cos(180°-40°) + cos 40) +(1/4) (1/2)
But cos (180° -x) = -cos x. So,
= (1/4)(-cos40°+cos40°) + 1/8
= 1/8
here is your answer...
hopes it helps you...
Answered by
4
Step-by-step explanation:
- Cos 20° - Cos 40° - Cos 80°
- Cos 20° - ( Cos 40° + Cos 80° )
- Cos 20° - [ 2 Cos ( 40° + 80° ) / 2 ] [ Cos ( 80° - 40° ) / 2 ]
- Cos 20° - 2 Cos 60° Cos 20°
- Cos 20° - 1 - 2 Cos 60°
❤❤❤Cos 60° = ½❤❤❤
- Cos 20° - 1 - 2 (
- Cos 20° ( 0 )
- Cos 20° - Cos 40° - Cos 80° = 0
Similar questions
Computer Science,
2 months ago
English,
2 months ago
Music,
5 months ago
Biology,
11 months ago
Biology,
11 months ago