Math, asked by Thayyabkhan, 11 months ago

prove thatroot 2 is irrational​

Answers

Answered by VJsuvam420
2

Answer:

Step-by-step explanation:

Let √2 be a rational number 

Therefore, √2= p/q  [ p and q are in their least terms i.e., HCF of (p,q)=1 and q ≠ 0

On squaring both sides, we get 

                  p²= 2q²                                                                                    ...(1)

Clearly, 2 is a factor of 2q²

⇒ 2 is a factor of p²                                                                    [since, 2q²=p²]

⇒ 2 is a factor of p

 Let p =2 m for all m ( where  m is a positive integer)

Squaring both sides, we get 

           p²= 4 m²                                                                                          ...(2)

From (1) and (2), we get 

          2q² = 4m²      ⇒      q²= 2m²

Clearly, 2 is a factor of 2m²

⇒       2 is a factor of q²                                                      [since, q² = 2m²]

⇒       2 is a factor of q 

Thus, we see that both p and q have common factor 2 which is a contradiction that H.C.F. of (p,q)= 1

    Therefore, Our supposition is wrong

Hence √2 is not a rational number i.e., irrational number.


Anilgulati100: Jrekodkekeldkcofpdpingapori
Thayyabkhan: thanks broo
VJsuvam420: wlc broo
Answered by spoo23
1

Let's suppose √2 is a rational number. Then we can write it √2 = a/b where a, b are whole numbers, b not zero.

We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order for a/b to be in simplest terms, both of a and b cannot be even. One or both must be odd. Otherwise, we could simplify a/b further.

From the equality √2 = a/b it follows that 2 = a2/b2, or a2 = 2 · b2. So the square of a is an even number since it is two times something.

From this we know that a itself is also an even number. Why? Because it can't be odd; if a itself was odd, then a · a would be odd too. Odd number times odd number is always odd. Check it if you don't believe me!

Okay, if a itself is an even number, then a is 2 times some other whole number. In symbols, a = 2k where k is this other number. We don't need to know what k is; it won't matter. Soon comes the contradiction.

If we substitute a = 2k into the original equation 2 = a2/b2, this is what we get:

2 = (2k)2/b2

2 = 4k2/b2

2*b2 = 4k2

b2 = 2k2

This means that b2 is even, from which follows again that b itself is even. And that is a contradiction!!!

WHY is that a contradiction? Because we started the whole process assuming that a/b was simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that √2 is rational) is not correct. Therefore √2 cannot be rational.

This will help u pakka!!!

please thank me

Similar questions