Math, asked by anuradhapasya, 4 months ago

prove thatv1+seca/cosa =sin^2a/1-cosa​

Answers

Answered by Anonymous
1

 \\  \\ \large\underline{ \underline{ \sf{ \red{correct \: question:} }}}  \\  \\

 \large \sf  \frac{1 + sec \alpha }{sec \alpha }  =  \frac{ {sin}^{2}  \alpha }{1 - cos \alpha }

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

 \\  \sf \: r.h.s =  \frac{ {sin}^{2} \alpha }{1 - cos \alpha }  \\  \\  \\  \bigstar \boxed{ \bf \: {sin}^{2} \alpha  +  {cos}^{2}  \alpha  = 1  } \\  \\  \\  \sf \:   \implies \frac{1 -  {cos}^{2} \alpha  }{1 - cos \alpha }  \\  \\  \\  \implies \sf \: \frac{( \cancel{1 - cos \alpha} )(1 + cos \alpha )}{ \cancel{1 - cos \alpha } } \\  \\  \\  \implies \sf \:  \pink{1 + cos \alpha  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)} \\  \\

 \\  \\  \\  \sf \: l.h.s =  \frac{1 + sec \alpha }{sec \alpha }  \\  \\  \\  \bigstar \boxed{ \bf \:sec \alpha  =  \frac{1}{cos \alpha }  } \\  \\  \\  \implies \sf \:  \frac{1 +  \frac{1}{cos \alpha } }{ \frac{1}{cos \alpha } }  \\  \\  \\  \implies \sf \:  \frac{ \frac{cos \alpha  + 1}{ \cancel{cos \alpha} } }{ \frac{1}{ \cancel{cos \alpha }} }  \\  \\  \\  \implies \sf \:  \pink{cos \alpha  + 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2) \\  \\

Hence , LHS = RHS (proved)

Similar questions