Math, asked by priya1134k, 1 month ago

prove the √3 is irrational give and​

Answers

Answered by havellshavells
2

Answer:

 √3 = p/q, where p, q are the integers i.e., p, q ∈ Z and co-primes, i.e., GCD (p,q) = 1. Here 3 is the prime number that divides p2, then 3 divides p and thus 3 is a factor of p. ... So, √3 is not a rational number. Therefore, the root of 3 is irrational.

Answered by khobragadevijendra
0

Answer:

this is your answer

Step-by-step explanation:

mark me brainlist

Attachments:
Similar questions