prove the √3 is irrational give and
Answers
Answered by
2
Answer:
√3 = p/q, where p, q are the integers i.e., p, q ∈ Z and co-primes, i.e., GCD (p,q) = 1. Here 3 is the prime number that divides p2, then 3 divides p and thus 3 is a factor of p. ... So, √3 is not a rational number. Therefore, the root of 3 is irrational.
Answered by
0
Answer:
this is your answer
Step-by-step explanation:
mark me brainlist
Attachments:
Similar questions