Math, asked by harishreddy2k, 9 months ago

PROVE THE ABOVE EQUATION​

Attachments:

Answers

Answered by jokerthedevil123
1
  • as the 3/5is the value of sin a
  • we shall draw a right angle triangle abc mark any point theta
  • substitute and the value as given will be obtained
Attachments:
Answered by abdul9838
1

 <b> <body \: bgcolor = "skyblue">

 \bf \pink{hey \: user \: here \: is \: answer} \\  \\  \bf \blue{ \boxed{ \boxed{ \huge \bf \: solution }}} \\  \\  \bf \underline{  \underline\purple{according \: to \: the \: question}} \\  \\    \bf\red{ sin \theta =  \frac{3}{5} }   \\  \\  \bf \blue{ \underline{by \: using \: pythagoras \: theorem}} \\  \bf \blue{we \: get} \\  \\  \bf \purple{base = 4} \\  \\    \bf \red{\therefore{tan \theta =  \frac{3}{4} }} \\  \bf \blue{and} \\  \bf \purple{cos \theta =  \frac{4}{5} } \\  \\  \bf \purple{ \therefore \: sec \theta =  \frac{5}{4} } \\  \\  \bf \blue{ \huge \: now} \\  \\  \bf \pink{ \underline{we \: have \: to \: prove}} \\  \\  \bf \green{(tan \theta + sec \theta)^{2} } \\  \\  \bf \pink{ ({ \frac{3}{4}  +  \frac{5}{4}) }^{2} } \\  \\  \bf \pink{ (\frac{ \cancel{8}}{ \cancel{4}} )}^{2}  \\  \\   \bf \pink{ {2}^{2} } \\  \\  \bf \pink{4} \\  \\  \bf \boxed{ \boxed{ \pink{ \bf \huge \: hence \: ans \: is \: 4}}}

Similar questions