Math, asked by gargkanak2005, 3 months ago

Prove the above equation
(Attached file)​

Attachments:

Answers

Answered by suhail2070
0

Step-by-step explanation:

 { \tan( \alpha ) }^{2}  -  { \tan( \beta ) }^{2}  =    { \sec( \alpha ) }^{2}  - 1  - ( { \sec(  \beta  ) }^{2}  - 1) \\  \\  =  { \sec( \alpha ) }^{2}  -  {  \sec(  \beta ) }^{2}  \\  \\  =  \frac{1}{ { \cos( \alpha ) }^{2} }  -  \frac{1}{ { \cos(  \beta  ) }^{2} }  \\  \\  \\  =  \frac{ { \cos( \beta )  }^{2} -  { \cos( \alpha ) }^{2}  }{ { \cos( \alpha ) }^{2}  { \cos( \beta ) }^{2} }  \\  \\ =  \frac{1 -  { \sin(  \beta ) }^{2}  - (1 -  { \sin(   \alpha  )}^{2}) }{ { \cos( \alpha ) }^{2} { \cos( \beta ) }^{2}  }  \\  \\  \\  \\  =  \frac{ { \sin( \alpha ) }^{2}   -  { \sin( \alpha ) }^{2}  }{ { \cos( \alpha ) }^{2} { \cos( \beta ) }^{2}  }

Similar questions