Math, asked by meghana13517, 8 months ago

Prove the above equation

Grade 10- Trigonometry ​

Attachments:

Answers

Answered by Anonymous
14

QUESTION:

Prove that cot⁴ A - 1 = cosec⁴ A - 2 cosec² A

\\ \\

GIVEN:

  • cot⁴ A - 1 = cosec⁴ A - 2 cosec² A.

\\ \\

TO PROVE:

  • cot⁴ A - 1 = cosec⁴ A - 2 cosec² A.

\\ \\

PROOF:

L.H.S: cot⁴ A - 1

 \sf  \dashrightarrow (cot^2\ A)^2 -1 \\  \\

\boxed{ \bold{ \large{ \green{cosec^2\ \theta - cot^2\ \theta=1}}}} \\  \\

\sf \implies cosec^2\ \theta -1  =  cot^2\ \theta \\  \\

 \sf  \dashrightarrow (cosec^2\ A - 1)^2 -1 \\  \\

\boxed{ \bold{ \red{(A - B)^2 = A^2 - 2AB + B^2}}} \\  \\

 \sf  \dashrightarrow cosec^4\ A - 2\ cosec^2\ A  + 1 -1 \\  \\

 \sf  \dashrightarrow cosec^4\ A - 2\ cosec^2\ A  \\  \\

R.H.S: cosec⁴ A - 2 cosec² A

\\

L.H.S = R.H.S

\\

cot⁴ A - 1 = cosec⁴ A - 2 cosec² A.

\\

HENCE PROVED.

Answered by Anonymous
8

cot⁴A-1 = Cosec⁴A-2Cosec²A

Taking LHS.

Cot⁴A-1

(Cot²A)² - (1)²

(cot²A+1) (cot²A-1)

(Cosec²A-1+1) (Cosec²A-1-1)

(Cosec²A) (Cosec²-2)

Cosec⁴A - 2Cosec². hence proved.

keep smiling ❣️

Similar questions