Math, asked by Anonymous, 1 month ago

Prove the above if provided that n(A) , n ( A U B ) , n(B) are the cardinal number of the following sets .

Want Quality Answers ✓

Wrong answers deleted ✓

If you tried hard but Not get the answer. So I won't report you . Your answer will be marked as Brainliest.✓​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Since,

It is given that,

  • A and B are finite sets.

Two cases arises :-

Case 1

  • When A and B are not disjoint Sets.

So,

Let assume that,

\rm :\longmapsto\:n(A - B) = m

\rm :\longmapsto\:n(A  \: \cap \: B) = n

\rm :\longmapsto\:n( B \:  - \: A) = p

Now,

Check the venn diagram, we have,

\rm :\longmapsto\:n(A \: \cup \:B)

 \rm \:=  \: \:m + n + p

 \rm \:=  \: \:m + n + p  + n - n

 \rm \:=  \: \:(m + n) + (n  + p) - n

 \rm \:=  \: \:n(A) + n(B) - n(A \: \cap \:B)

\bf\implies \:n(A \: \cup \:B)=  \: \:n(A) + n(B) - n(A \: \cap \:B)

Hence, Proved

Again,

\rm :\longmapsto\:n(A \: \cup \:B)

 \rm \:=  \: \:m + n + p

 \rm \:=  \: \:n(A - B) + n(A \: \cap \:B) + n(B - A)

Hence, Proved

Case 2

  • When A and B are disjoint sets

Since,

It is given that

  • A and B are finite sets,

Let assume that,

\rm :\longmapsto\:n(A) = m

\rm :\longmapsto\:n(B) = n

Now, if we check the venn diagram,

\rm :\longmapsto\:n(A \: \cup \:B)

 \rm \:=  \: \: m + n

 \rm \:=  \: \: m + n - 0

 \rm \:=  \: \:n(A) + n(B) - n(A \: \cap \:B)

\bf\implies \:n(A \: \cup \:B)=  \: \:n(A) + n(B) - n(A \: \cap \:B)

Hence, Proved

Again,

\rm :\longmapsto\:n(A \: \cup \:B)

 \rm \:=  \: \:m + n

 \rm \:=  \: \:(m - 0) +(n - 0)  + 0

 \rm \:=\bigg(n(A) - n(A\cap B)\bigg)  + \bigg(n(B) - n(A\cap B) \bigg) +  n(A \cap B)

 \rm \:=  \: \:n(A - B) + n(B - A) + n(A \: \cap \:B)

Hence, Proved

Attachments:
Similar questions