Math, asked by strive4, 3 months ago

Prove the above please​

Attachments:

Answers

Answered by itzPapaKaHelicopter
6

\huge\mathfrak\green{☟ \:  \:  \: answer \:  \:  \:  \: ✎}

Here we need to show that L.H.S = 1

Before that we need to use two important identity

i.e

 \cos(a \times b)  \times  \cos(a - b)  =  {cos}^{2} a -   {sin}^{2} b

‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎and

 \sin(a + b)  \times  \sin(a - b)  =  {sin}^{2} a -  {sin}^{2} b

\sf \colorbox{pink} {\red(Now, }

L.H.S =  \cot( \frac{\pi}{4}  + x)  \cot( \frac{\pi}{4} - x )  =  \frac{ \cos( \frac{\pi}{4} + x ) }{ \sin( \frac{\pi}{4}  + x) }  \times  \frac{ \cos( \frac{\pi}{4}  - x) }{ \sin( \frac{\pi}{4}  - x) }

 =   \frac{ {cos}^{2}  \frac{\pi}{4}  -  {sin}^{2} x}{ {sin}^{2}  \frac{\pi}{4}  -  {sin}^{2}x }  =  \frac{( \frac{1}{ \sqrt{2}  ^{} }  {)}^{2}  -  {sin}^{2} x}{( \frac{1}{ \sqrt{2} }  {)}^{2}  -  {sin}^{2} x}  =  \frac{ \frac{1}{2}  -  {sin}^{2} x}{ \frac{1}{2} -  {sin}^{2} x }

 = 1 = R.H.S

Hence Proved.

 \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸} \\  and\\ \sf \colorbox{lightgreen} {\red❤ANSWER ᵇʸ ᶠˡⁱʳᵗʸ ᵇᵒʸ}

Answered by Anonymous
2

Answer:

Here we need to show that L.H.S = 1

Before that we need to use two important identity

i.e

\cos(a \times b) \times \cos(a - b) = {cos}^{2} a - {sin}^{2} bcos(a×b)×cos(a−b)=cos

2

a−sin

2

b

‎‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎and

\sin(a + b) \times \sin(a - b) = {sin}^{2} a - {sin}^{2} bsin(a+b)×sin(a−b)=sin

2

a−sin

2

b

\sf \colorbox{pink} {\red(Now, }

(Now,

L.H.S = \cot( \frac{\pi}{4} + x) \cot( \frac{\pi}{4} - x ) = \frac{ \cos( \frac{\pi}{4} + x ) }{ \sin( \frac{\pi}{4} + x) } \times \frac{ \cos( \frac{\pi}{4} - x) }{ \sin( \frac{\pi}{4} - x) }L.H.S=cot(

4

π

+x)cot(

4

π

−x)=

sin(

4

π

+x)

cos(

4

π

+x)

×

sin(

4

π

−x)

cos(

4

π

−x)

= \frac{ {cos}^{2} \frac{\pi}{4} - {sin}^{2} x}{ {sin}^{2} \frac{\pi}{4} - {sin}^{2}x } = \frac{( \frac{1}{ \sqrt{2} ^{} } {)}^{2} - {sin}^{2} x}{( \frac{1}{ \sqrt{2} } {)}^{2} - {sin}^{2} x} = \frac{ \frac{1}{2} - {sin}^{2} x}{ \frac{1}{2} - {sin}^{2} x }=

sin

2

4

π

−sin

2

x

cos

2

4

π

−sin

2

x

=

(

2

1

)

2

−sin

2

x

(

2

1

)

2

−sin

2

x

=

2

1

−sin

2

x

2

1

−sin

2

x

= 1 = R.H.S=1=R.H.S

Hence Proved.

Step-by-step explanation:

hope it helps you!

thank you!

Similar questions