Prove the above please
Answers
Here we need to show that L.H.S = 1
Before that we need to use two important identity
i.e
and
Hence Proved.
Answer:
Here we need to show that L.H.S = 1
Before that we need to use two important identity
i.e
\cos(a \times b) \times \cos(a - b) = {cos}^{2} a - {sin}^{2} bcos(a×b)×cos(a−b)=cos
2
a−sin
2
b
and
\sin(a + b) \times \sin(a - b) = {sin}^{2} a - {sin}^{2} bsin(a+b)×sin(a−b)=sin
2
a−sin
2
b
\sf \colorbox{pink} {\red(Now, }
(Now,
L.H.S = \cot( \frac{\pi}{4} + x) \cot( \frac{\pi}{4} - x ) = \frac{ \cos( \frac{\pi}{4} + x ) }{ \sin( \frac{\pi}{4} + x) } \times \frac{ \cos( \frac{\pi}{4} - x) }{ \sin( \frac{\pi}{4} - x) }L.H.S=cot(
4
π
+x)cot(
4
π
−x)=
sin(
4
π
+x)
cos(
4
π
+x)
×
sin(
4
π
−x)
cos(
4
π
−x)
= \frac{ {cos}^{2} \frac{\pi}{4} - {sin}^{2} x}{ {sin}^{2} \frac{\pi}{4} - {sin}^{2}x } = \frac{( \frac{1}{ \sqrt{2} ^{} } {)}^{2} - {sin}^{2} x}{( \frac{1}{ \sqrt{2} } {)}^{2} - {sin}^{2} x} = \frac{ \frac{1}{2} - {sin}^{2} x}{ \frac{1}{2} - {sin}^{2} x }=
sin
2
4
π
−sin
2
x
cos
2
4
π
−sin
2
x
=
(
2
1
)
2
−sin
2
x
(
2
1
)
2
−sin
2
x
=
2
1
−sin
2
x
2
1
−sin
2
x
= 1 = R.H.S=1=R.H.S
Hence Proved.
Step-by-step explanation:
hope it helps you!
thank you!