Math, asked by divyadhuri2010, 7 months ago

prove the above Q...........
and Explain​

Attachments:

Answers

Answered by Anonymous
1

let sin θ = x and cos θ = y

then the given equation becomes

 =  >  \frac{ {x}^{3} +  {y}^{3}  }{x + y}  + \frac{ {x}^{3} -   {y}^{3}  }{x  -  y} = 2 \\  \\ taking \: lhs \: we \: have \\  \\  = \frac{ {x}^{3} +  {y}^{3}  }{x + y}  + \frac{ {x}^{3} -   {y}^{3}  }{x  -  y} \\  \\  =  \frac{(x  -  y)( {x}^{3}  +  {y}^{3}) +(x   +   y)( {x}^{3}   -   {y}^{3}) }{(x + y)(x - y)}  \\  \\  =  \frac{ {x}^{4}  + x {y}^{3}  -  {x}^{3} y -  {y}^{4}  +  {x}^{4} - x {y}^{3}  +  {x}^{3} y -  {y}^{4}  }{ {x}^{2} -  {y}^{2}  }  \\  \\  =  \frac{2( {x}^{4} -  {y}^{4})  }{ {x}^{2} -  {y}^{2}  }  \\  \\  =  \frac{2( { ({x}^{2}) }^{2} -  { ({y}^{2}) }^{2} )}{ {x}^{2}  -  {y}^{2} }  \\  \\  = 2 \frac{( {x}^{2}  +  {y}^{2})( {x}^{2} -  {y}^{2}   )}{ {x}^{2} -  {y}^{2}  }  \\  \\  = 2( {x}^{2}  +  {y}^{2} ) \\  \\ on \: substituting \: the \: values \:  \\  \\  = 2( {sin  }^{2} θ  +   {cos}^{2} θ) \\  \\  = 2 \times 1 \\  \\  = 2 \\  \\ =  rhs

Similar questions