Math, asked by Archita199, 11 months ago

prove the above question​

Attachments:

Answers

Answered by thedevilingninja
1

Answer:

There u go mark as brainilist :)

Attachments:
Answered by sanketj
1

LHS

 = sin( {90}^{o}  - x)cos( {90}^{o} - x) \\  = cosx \times sinx  \\  \binom{since \: sin( {90}^{o} - x) = cosx }{and \: cos( {90}^{o}  - x) = sinx}

RHS

 =  \frac{tanx}{1 +  {cot}^{2}( {90}^{o}  - x) }  \\  =  \frac{tanx}{1 +  {tan}^{2} x}  \\  \binom{since \: cot( {90}^{o} - x) = tan( {90}^{o}  - x)  }{}  \\   \\  =  \frac{tanx}{ {sec}^{2}x }  \\  \binom{since \: 1 +  {tan}^{2}x =  {sec}^{2}x  }{?}  \\  \\ =   \frac{ \frac{sinx}{cosx} }{ \frac{1}{ {cos}^{2}x } } \\  = ( \frac{sinx}{cosx}  )( \frac{ {cos}^{2} x}{1}) \\  = sinx \times cosx

= LHS

•.• LHS = RHS

.•.

sin( {90}^{o}  - x)cos( {90}^{o}  - x) \\  =  \frac{tanx}{1 +  {cot}^{2}( {90}^{o}  - x) }

... Hence Proved!

Similar questions