Math, asked by DevyaniKhushi, 5 months ago

→ Prove the above question using suitable Trigonometric Identities.

Spam Will Be Reported❌

Attachments:

Answers

Answered by Anonymous
9

Question:-

 \rm \:  \to \:  \dfrac{ \tan \theta }{1 -  \cot \theta}  +  \dfrac{ \cot \theta }{1 -  \tan \theta }  =  \sec \theta. \csc \theta + 1

Solution:-

Taking LHS

 \rm \:  \to \:  \dfrac{ \tan \theta }{1 -  \cot \theta}  +  \dfrac{ \cot \theta }{1 -  \tan \theta }

Using trigonometry identities

 \to \dfrac{ \dfrac{ \sin\theta}{ \cos\theta } }{1  -  \dfrac{ \cos\theta}{ \sin \theta} }  +  \dfrac{ \dfrac{ \cos\theta}{ \sin\theta} }{1 -  \dfrac{ \sin\theta }{ \cos\theta} }

 \to \dfrac{ \dfrac{ \sin\theta}{ \cos\theta } }{ \dfrac{  \sin\theta -  \cos\theta}{ \sin \theta} }  +  \dfrac{ \dfrac{ \cos\theta}{ \sin\theta} }{\dfrac{ \cos\theta -  \sin\theta }{ \cos\theta} }

  \rm \to \dfrac{ \sin {}^{2}  \theta}{ \cos\theta( \sin\theta  -  \cos \theta)}  +  \dfrac{ \cos {}^{2} \theta }{ \sin \theta( \cos  \theta -  \sin\theta )}

 \rm  \to\dfrac{ \sin {}^{2}  \theta}{ \cos\theta( \sin\theta  -  \cos \theta)}   -   \dfrac{ \cos {}^{2} \theta }{ \sin \theta( \sin  \theta -  \cos\theta )}

 \rm \to \:  \dfrac{ \sin  {}^{3} \theta-  \cos {}^{3}  \theta  }{ \sin\theta \cos\theta ( \sin \theta -  \cos \theta)  }

Now we can write as

 \rm \:  \to \:  \dfrac{( \sin \theta -  \cos \theta)( \sin {}^{2} \theta   +  \sin \theta \cos\theta  +  \cos  {}^{2} \theta)}{\sin \theta \cos\theta (\sin \theta -  \cos \theta)}

\rm \:  \to \:  \dfrac{ \cancel{( \sin \theta -  \cos \theta)}( \sin {}^{2} \theta   +  \sin \theta \cos\theta  +  \cos  {}^{2} \theta)}{\sin \theta \cos\theta \cancel{ (\sin \theta -  \cos \theta)}}

 \to \:  \dfrac{ 1+  \sin \theta \cos \theta}{\sin \theta \cos \theta}

 \to \dfrac{1}{\sin \theta \cos \theta}  +  \dfrac{\sin \theta \cos \theta}{\sin \theta \cos \theta}

 \rm \:  \to \sec\theta \csc \theta + 1

Hence proved

Similar questions