Math, asked by Anonymous, 2 months ago

Prove the above :-

Want quality answers ✓

Don't Spam Please ✓

If you didn't get the answer . But you did work hard . So your answer will be marked as Brainliest ✓

Attachments:

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: I_n \:  =  \: \displaystyle\int_{x=0}^\infty x^ne^{-x}\,dx

Using By parts,

 \rm \:  \:  =  \displaystyle \: -x^ne^{-x}\Big|_{x=0}^\infty+n\int_{x=0}^\infty x^{n-1}e^{-x}\,dx.

 \rm \:  \:  =  \displaystyle \: - \: (0 - 0) \: + \: n\int_{x=0}^\infty x^{n-1}e^{-x}\,dx.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {e}^{ -  \infty } = 0 \bigg \}}

\rm \:  \:  =  \: 0  + nI_{n - 1}

\bf\implies \:I_n = n \: I_{n - 1} -  -  - (1)

Consider,

\rm :\longmapsto\: \: I_{n - 1} \:  =  \: \displaystyle\int_{x=0}^\infty x^{n - 1} e^{-x}\,dx

On integrating by parts,

 \rm \:  \:  =  \displaystyle \: -x^{n - 1}e^{-x}\Big|_{x=0}^\infty+(n - 1)\int_{x=0}^\infty x^{n-2}e^{-x}\,dx.

 \rm \:  \:  =  \displaystyle \: - \: (0 - 0) \: + \: (n - 1)\int_{x=0}^\infty x^{n-2}e^{-x}\,dx.

\rm \:  \:  =  \: 0  + (n - 1)I_{n - 2}

\bf\implies \:I_{n - 1} = (n - 1)\: I_{n - 2} -  -  - (2)

So, continuing like this ,

\bf\implies \:I_{n - 2} = (n - 2)\: I_{n - 3} -  -  - (3)

\bf\implies \:I_{n - 3} = (n - 3)\: I_{n - 4} -  -  - (4)

.

.

.

.

.

\rm :\longmapsto\:\: I_ 0\:  =  \: \displaystyle\int_{x=0}^\infty e^{-x}\,dx

\rm \:  \:  =  \:- \: e^{-x}\Big|_{x=0}^\infty

\rm \:  \:  =  \:  - ( {e}^{ -  \infty }  -  {e}^{0})

\rm \:  \:  =  \:  - (0 - 1)

\rm \:  \:  =  \: 1

\bf\implies \:I_0 = 1

Hence,

Equation (1) can be rewritten as

\rm :\longmapsto\:I_n = n(n - 1)(n - 2) -  -  -  - 3 \times 2 \times I_0

\rm :\longmapsto\:I_n = n(n - 1)(n - 2) -  -  -  - 3 \times 2 \times 1

\bf\implies \:I_n \:  =  \: n !

\bf\implies \:\: \displaystyle\int_{x=0}^\infty \bf \:  x^ne^{-x}\,dx \:  =  \: n!

Additional Information :-

Integration by Parts :-

✏️See the rule:

  • ∫u v dx = u∫v dx −∫u' (∫v dx) dx

where,

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts , the ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

Similar questions
Math, 10 months ago