prove the All sin, cos, Tan, cosec, sec, cot teta degrees up to 180
Answers
- In trigonometrical ratios of angles (180° + θ) we will find the relation between all six trigonometrical ratios.
We know that,
sin (90° + θ) = cos θ
cos (90° + θ) = - sin θ
tan (90° + θ) = - cot θ
csc (90° + θ) = sec θ
sec ( 90° + θ) = - csc θ
cot ( 90° + θ) = - tan θ
_________________________
- Using the above proved results we will prove all six trigonometrical ratios of (180° + θ).
sin (180° + θ) = sin (90° + 90° + θ)
= sin [90° + (90° + θ)]
= cos (90° + θ), [since sin (90° + θ) = cos θ]
Therefore, sin (180° + θ) = - sin θ, [since cos (90° + θ) = - sin θ]
cos (180° + θ) = cos (90° + 90° + θ)
= cos [90° + (90° + θ)]
= - sin (90° + θ), [since cos (90° + θ) = -sin θ]
Therefore, cos (180° + θ) = - cos θ, [since sin (90° + θ) = cos θ]
tan (180° + θ) = cos (90° + 90° + θ)
= tan [90° + (90° + θ)]
= - cot (90° + θ), [since tan (90° + θ) = -cot θ]
Therefore, tan (180° + θ) = tan θ, [since cot (90° + θ) = -tan θ]
csc (180° + θ) = 1sin(180°+Θ)
= 1−sinΘ, [since sin (180° + θ) = -sin θ]
Therefore, csc (180° + θ) = - csc θ;
sec (180° + θ) = 1cos(180°+Θ)
= 1−cosΘ, [since cos (180° + θ) = - cos θ]
Therefore, sec (180° + θ) = - sec θ
and
cot (180° + θ) = 1tan(180°+Θ)
= 1tanΘ, [since tan (180° + θ) = tan θ]
Therefore, cot (180° + θ) = cot θ