Math, asked by Anonymous, 4 days ago

Prove the below series,

  \boxed{ \sum \limits^n_{k = 1} {k}^{3}  =  \dfrac{n^2(n + 1)^2}{4} }

Answers

Answered by SparklingBoy
277

 \large \dag Question :-

 \rm Prove : \sum \limits^n_{k = 1} {k}^{3} = \dfrac{n^2(n + 1)^2}{4} \\

 \large \dag Step by step Solution :-

\text{We\: have} \: \sum \limits^n_{k = 1} {k}^{3}\\\\

Putting Values we get ,

{  \sum \limits^n_{k = 1} {k}^{3} =  {1}^{3}  +  {2}^{3}   +  {3}^{3}   +  \: . \: . \: . \: . +  {n}^{3}}   \\  \\

Now we have the identity ;

 \\  \bf\red { k^2 {(k + 1)}^{2}  - ( {k - 1)}^{2} = 4 {k}^{3}   + k} \\  \\

Now Putting k = 1 , 2 , 3 , . . . . . , n in above identity we get,

  \\ {1}^{2}   \times  {2}^{2}  -  {0}^{2} \times  {1}^{2}   = 4 \times  {1}^{3}  \\  \\

 {2}^{2}  \times  {3}^{2}  -  {1}^{2}  \times  {2}^{2}  = 4 \times  {2}^{3}  \\  \\

 {3}^{2}  \times  {4}^{2}  -  {2}^{2} \times  {3}^{2}   = 4 \times  {3}^{3}  \\  \\

.  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\.  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ \\

n( {n + 1)}^{2}  - (n - 1) {n}^{2}  = 3 \times  {n}^{2}  + n \\  \\

Now Adding Columnwise we get,

 \\ \  {n}^{2} {(n + 1)}^{2}  - 0 {}^{2}  \times  {1}^{2}  = 4( {1}^{3}  +  {2}^{3}  +  {3}^{3}  +  ... +  {n}^{3})  \\  \\

 \implies n {}^{2}( n + 1 {)}^{2}  = 4 \sum \limits^n_{k = 1} {k}^{3} \\  \\

 \implies\sum \limits^n_{k = 1} {k}^{3} =  \frac {{n}^{2} ( {n + 1)}^{2} }{4} \\  \\

 \implies\sum \limits^n_{k = 1} {k}^{3} = \bigg(  \frac{n(n + 1)}{2} \bigg)^{2}   \\  \\

Therefore,

\purple{ \large :\longmapsto  \underline {\boxed{{\bf\sum \limits^n_{k = 1} {k}^{3} =  \bigg(  \frac{n(n + 1)}{2} \bigg)^{2} } }}} \\

\large \red\maltese \:  \: \underline{\pink{\underline{\frak{\pmb{\text Hence\:\:Proved }}}}}

Answered by NewtonBaba420
63

 \large \dag Question :-

 \rm Prove : \sum \limits^n_{k = 1} {k}^{3} = \dfrac{n^2(n + 1)^2}{4}

 \large \dag Step by step Solution :-

Let,

  \sum \limits^n_{k = 1} {k}^{3} = \rm S_n

Putting Values we get ,

{  \text S_n =  {1}^{3}  +  {2}^{3}   +  {3}^{3}   +  \: . \: . \: . \: . +  {n}^{3}}   \\  \\

Now we have the identity ;

 \\  \bf\red { k^2 {(k + 1)}^{2}  - ( {k - 1)}^{2} = 4 {k}^{3}   + k} \\  \\

Now Putting k = 1 , 2 , 3 , . . . . . , n in above identity we get,

  \\ {1}^{2}   \times  {2}^{2}  -  {0}^{2} \times  {1}^{2}   = 4 \times  {1}^{3}  \\  \\

 {2}^{2}  \times  {3}^{2}  -  {1}^{2}  \times  {2}^{2}  = 4 \times  {2}^{3}  \\  \\

 {3}^{2}  \times  {4}^{2}  -  {2}^{2} \times  {3}^{2}   = 4 \times  {3}^{3}  \\  \\

.  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\.  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ .  \: . \: . \: .\: . \: . \: .\: . \: . \: .\: . \: . \: .\\ \\

n( {n + 1)}^{2}  - (n - 1) {n}^{2}  = 3 \times  {n}^{2}  + n \\  \\

Now Adding Columnwise we get,

 \\ \  {n}^{2} {(n + 1)}^{2}  - 0 {}^{2}  \times  {1}^{2}  = 4( {1}^{3}  +  {2}^{3}  +  {3}^{3}  +  ... +  {n}^{3}  \\  \\

 \implies n {}^{2}( n + 1 {)}^{2}  = 4 \sum \limits^n_{k = 1} {k}^{3} \\  \\

 \implies\sum \limits^n_{k = 1} {k}^{3} =  \frac {{n}^{2} ( {n + 1)}^{2} }{4} \\  \\

 \implies\sum \limits^n_{k = 1} {k}^{3} = \bigg(  \frac{n(n + 1)}{2} \bigg)^{2}   \\  \\

Therefore,

\purple{ \large :\longmapsto  \underline {\boxed{{\bf S_n = \sum \limits^n_{k = 1} {k}^{3} =  \bigg(  \frac{n(n + 1)}{2} \bigg)^{2} } }}} \\

\large \red\maltese \:  \: \underline{\pink{\underline{\frak{\pmb{\text Hence\:\:Proved }}}}}

Similar questions