Math, asked by SREEBHARATH, 1 year ago

prove the conver of BPT

Answers

Answered by Prakashroy
2
It is given below hope it helps u please rate 5stars and put thanks!!..
Attachments:
Answered by anshika1605
0

Answer:

Step-by-step explanation:

Construction-  Extend the line segment DE and produce it to F such that, EF=DE.

In the triangle, ADE, and also  the triangle CFE

EC= AE —–   (given)

∠CEF = ∠AED {vertically opposite angles}

EF = DE { by construction}

hence,

△ CFE ≅  △ ADE {by SAS}

Therefore,

∠CFE = ∠ADE {by c.p.c.t.}

∠FCE= ∠DAE    {by c.p.c.t.}

and CF = AD {by c.p.c.t.}

The angles, ∠CFE and ∠ADE are the alternate interior angles. Assume  CF and AB as two lines which are intersected by the transversal DF.

In a similar way, ∠FCE and ∠DAE are the alternate interior angles.  Assume CF and AB are the two lines which are intersected by the transversal AC.

Therefore, CF ∥ AB

So, CF ∥ BD

and CF = BD  {since BD = AD, it is proved that CF = AD}

Thus, BDFC forms a parallelogram.

By the use of properties of a parallelogram, we can write

BC ∥ DF

and BC = DF

BC ∥ DE

and DE = (1/2 *  BC).

Hence, the midpoint theorem is  Proved.

Similar questions