prove the crammers rule
Answers
Answer:
The proof for Cramer's rule uses just two properties of determinants: linearity with respect to any given column (taking for that column a linear combination of column vectors produces as determinant the corresponding linear combination of their determinants), and the fact that the determinant is zero whenever two
▩▩▨Hope it's helpful ★★
Step-by-step explanation:
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand-sides of the equations. It is named after Gabriel Cramer (1704–1752), who published the rule for an arbitrary number of unknowns in 1750,[1][2] although Colin Maclaurin also published special cases of the rule in 1748[3] (and possibly knew of it as early as 1729).
Hope it helps you. If yes than comment down.