Math, asked by mayukhkhanra2, 9 months ago

Prove the diagonal of a parallelogram bisected each other.

Answers

Answered by Anonymous
83

\rule{200}3

\tt\large{\red{Correct \: Question:-}}

Prove that the diagonal of a parallelogram bisect each other.

\tt\large{\red{Answer:-}}

\tt\large{\green{Given:-}}

\sf\ ||gm ABCD \: in \: which\:  diagonals \: AC \: and \: BD\:  bisect \: each \: other.

\tt\large{\purple{To \: Prove:-}}

\sf\ OA = OC \: and \: OB = OD

\tt\large{\purple{Proof:-}}

\sf\ AB || CD \: (Given)

\sf\ ∠1 = ∠2 \:  (alternate ∠s)

\sf\ ∠3 = ∠4 \: (alternate ∠s)

\sf\ and \: AB = CD \: (opposite \:  sides \: of //gm)

\sf\ COD = AOB \: (A.S.A. rule)

\sf\ OA = OC \: and \: OB = OD

\sf\ Hence \: the\:  result !!

\rule{200}3

Similar questions