Chinese, asked by 7TeeN, 10 months ago

prove the duplication formula​

Answers

Answered by yallboymoney2061
2

Answer:

Gamma functions of argument 2z can be expressed in terms of gamma functions of smaller arguments. From the definition of the beta function,

B(m,n)=(Gamma(m)Gamma(n))/(Gamma(m+n))=int_0^1u^(m-1)(1-u)^(n-1)du.  

(1)

Now, let m=n=z, then

(Gamma(z)Gamma(z))/(Gamma(2z))=int_0^1u^(z-1)(1-u)^(z-1)du  

(2)

and u=(1+x)/2, so du=dx/2 and

(Gamma(z)Gamma(z))/(Gamma(2z)) = int_(-1)^1((1+x)/2)^(z-1)(1-(1+x)/2)^(z-1)(1/2dx)  

(3)

= 1/2int_(-1)^1((1+x)/2)^(z-1)((1-x)/2)^(z-1)dx  

(4)

= 1/(2^(1+2(z-1)))int_(-1)^1(1-x^2)^(z-1)dx  

(5)

= 2^(1-2z)[2int_0^1(1-x^2)^(z-1)dx].  

(6)

Now, use the beta function identity

B(m,n)=2int_0^1x^(2m-1)(1-x^2)^(n-1)dx  

(7)

to write the above as

(Gamma(z)Gamma(z))/(Gamma(2z))=2^(1-2z)B(1/2,z)=2^(1-2z)(Gamma(1/2)Gamma(z))/(Gamma(z+1/2)).  

(8)

Solving for Gamma(2z) and using Gamma(1/2)=sqrt(pi) then gives

Gamma(2z) = (2pi)^(-1/2)2^(2z-1/2)Gamma(z)Gamma(z+1/2)  

(9)

= (2^(2z-1)Gamma(z)Gamma(z+1/2))/(sqrt(pi)).

Explanation:

Answered by MRsteveAustiN
15

\huge\pink{Touch ~the ~text}

</p><p></p><p>&lt;!DOCTYPE html&gt;</p><p>&lt;html&gt;</p><p>&lt;head&gt;</p><p>&lt;meta name="viewport" content="width=device-width, initial-scale=1"&gt;</p><p>&lt;span&gt;</p><p>  &lt;div&gt;IsiTaJ07&lt;/div&gt;</p><p>  &lt;div&gt;Priyanshi&lt;/div&gt;</p><p>  &lt;div&gt;Hrishika&lt;/div&gt;</p><p>  &lt;div&gt;Harshita&lt;/div&gt;</p><p>   &lt;div&gt;Mahak&lt;/div&gt;</p><p>&lt;/span&gt;</p><p>&lt;style&gt;</p><p> @import  url(https://fonts.googleapis.com/css?family=Merienda);</p><p>body</p><p>{</p><p> font-family:calibri;</p><p>}</p><p>span {</p><p>  text-align:center;</p><p>  display: flex;</p><p>}</p><p>div</p><p>{</p><p>  opacity:0.4;</p><p>  color:white;</p><p>  font: 40px Merienda;</p><p>  text-shadow:1px 1px 5px #dddddd,2px 2px 5px #ffffff,3px 3px 5px #ffffff,4px 4px 5px #ffffff,5px 5px 5px #ffffff,6px 6px 5px #adadad,7px 7px 5px #adadad,8px 8px 5px #adadad,9px 9px 5px #adadad,10px 10px 5px #adadad,11px 11px 5px ,12px 12px 5px ;</p><p>  transition:opacity 500ms linear,text-shadow 500ms ease-in-out,color 300ms linear;</p><p>}</p><p>div:hover</p><p>{</p><p>  opacity:0.8;</p><p>  text-shadow:1px 1px #454545;</p><p>  color:red;</p><p>  text-shadow:0px 0px 20px #000000;</p><p>  animation:myanim 100ms infinite linear;</p><p>}</p><p>div:active</p><p>{</p><p>  opacity:0.8;</p><p>  text-shadow:1px 1px 5px #000000,2px 2px 5px #000000,3px 3px 5px #000000,4px 4px 5px #000000,5px 5px 5px #000000,6px 6px 50px #000000,7px 7px 5px #000000,8px 8px 5px #000000,9px 9px 5px #000000,10px 10px 5px #000000,11px 11px 5px #000000,12px 12px 5px #000000,13px 13px 5px #000000,14px 14px 5px #000000,15px 15px 5px #000000,16px 16px 5px #000000,16px 16px 5px #000000,17px 17px 5px #000000,18px 18px 5px #000000,19px 19px 5px #000000; </p><p>}</p><p>@keyframes myanim </p><p>{</p><p>  10%{transform:scale(1)rotate(0deg);}</p><p>  20%{transform:scale(1)rotate(-3deg);}</p><p>  80%{transform:scale(1)rotate(3deg);}</p><p>  100%{transform:scale(1)rotate(0deg);}</p><p>}</p><p> &lt;/style&gt;</p><p>&lt;/html&gt;</p><p></p><p></p><p></p><p>

Similar questions