Math, asked by anindyaadhikari13, 9 hours ago

Prove the equality given in the attachment. ​

Attachments:

Answers

Answered by kamalhajare543
34

Answer:

\huge\tt\red{❥}\tt\pink{A}\tt\blue{N}\tt\green{S}\tt\purple{W}\tt\orange{E}\tt\orange{R}\huge\tt\purple{。✿}❥

LHS.

  \frac{1}{ \cos \: A  +  \sin A - 1}  +  \frac{1}{ \cos \:A +  \sin \:  A +1 }

 =  \frac{ \cos \:  A +  \sin \:A + 1 \cos \: A +  \sin \:  A }{( \cos \: A +  \sin \: A) {}^{2}  - 1}

2(cosA+sinA)/sos^2+sin^2 A +2cos A sinA-1

  = \frac{2( \cos \:A +  \sin \:A)  }{1 + 2 \cos \: A \sin \: A  }  =  \frac{ \cos \:  A +  \sin \: A }{ \cos \:A \sin \:  A}

  = \frac{ \cos \:  A}{ \cos \:  A \sin \: A}  +  \frac{ \sin \: A }{ \cos \: A \:  \sin \: A  }

  = \frac{1}{ \sin \: A }  +  \frac{1}{ \cos \:  A}

=cosecA + secA= RHS.

 \huge\mathbb{\underline{vertified \: answer}}


anindyaadhikari13: Thank you!
Answered by Shhounakchatterjee
17

Answer:

This is your answer

Step-by-step explanation:

Mark it as brainliest...

Attachments:

anindyaadhikari13: Thanks!
Similar questions