Prove the flowing:
![{cot}^{2} a \: - \frac{1}{ {sin}^{2}a } \: + 1 = 0 {cot}^{2} a \: - \frac{1}{ {sin}^{2}a } \: + 1 = 0](https://tex.z-dn.net/?f=++%7Bcot%7D%5E%7B2%7D+a+%5C%3A++-++%5Cfrac%7B1%7D%7B+%7Bsin%7D%5E%7B2%7Da+%7D++%5C%3A++%2B+1+%3D+0)
Answers
Answered by
6
Answer:
Hola‼..........❤✌
L.H.S
cot^2 a - 1/sin^2 a +1
= cos^2 a /sin^2 a - 1/sin ^2 a +1
= cos^2 -1 / (1-cos^2) +1
= -(-cos^2 +1)/ ( 1-cos^2)+1
= -1 +1
=0
=L.H.S
(proved)
Hope it’s helpful....... ☺
Similar questions