Prove the following:
1 + cos x + sin x / 1+ cos x - sinx = 1+ sinx / cos x
Answers
Answered by
7
LHS = ( 1 + cosx + sinx )/( 1 + cosx - sinx )
= (1 + cosx + sinx )(1 + cosx + sinx)/( 1 + cosx -sinx )(1 + cosx + sinx)
= ( 1 + cosx + sinx )²/{(1 + cosx) ² - (sinx)²}
= ( 1 + sin²x + cos²x + 2sinx.cosx + 2sinx + cosx )/{ 1 + cos²x +2cosx - sin²x }
[use , sin²x + cos²x = 1 ]
= ( 2 + 2sinx.cosx + 2sinx. + 2cosx )/2cosx(1 + cosx )
= 2( 1 + sinx )(1 + cosx )/2cosx(1 +cosx)
= ( 1 + sinx)/cosx = RHS
= (1 + cosx + sinx )(1 + cosx + sinx)/( 1 + cosx -sinx )(1 + cosx + sinx)
= ( 1 + cosx + sinx )²/{(1 + cosx) ² - (sinx)²}
= ( 1 + sin²x + cos²x + 2sinx.cosx + 2sinx + cosx )/{ 1 + cos²x +2cosx - sin²x }
[use , sin²x + cos²x = 1 ]
= ( 2 + 2sinx.cosx + 2sinx. + 2cosx )/2cosx(1 + cosx )
= 2( 1 + sinx )(1 + cosx )/2cosx(1 +cosx)
= ( 1 + sinx)/cosx = RHS
tokaians:
Please answer my rest of the questions
Answered by
2
Hey there!
LHS = ( 1 + cosx + sinx )/( 1 + cosx - sinx )
= (1 + cosx + sinx )(1 + cosx + sinx)/( 1 + cosx -sinx )(1 + cosx + sinx)
= ( 1 + cosx + sinx )^2/{(1 + cosx)^2 - (sinx)^2}
= ( 1 + sin^2x + cos^2x + 2sinx.cosx + 2sinx + cosx )/{ 1 + cos^2x +2cosx - sin^2x }
= ( 2 + 2sinx.cosx + 2sinx. + 2cosx )/2cosx(1 + cosx )
= 2( 1 + sinx )(1 + cosx )/2cosx(1 +cosx)
= ( 1 + sinx)/cosx = RHS
Hope it helps You!
LHS = ( 1 + cosx + sinx )/( 1 + cosx - sinx )
= (1 + cosx + sinx )(1 + cosx + sinx)/( 1 + cosx -sinx )(1 + cosx + sinx)
= ( 1 + cosx + sinx )^2/{(1 + cosx)^2 - (sinx)^2}
= ( 1 + sin^2x + cos^2x + 2sinx.cosx + 2sinx + cosx )/{ 1 + cos^2x +2cosx - sin^2x }
= ( 2 + 2sinx.cosx + 2sinx. + 2cosx )/2cosx(1 + cosx )
= 2( 1 + sinx )(1 + cosx )/2cosx(1 +cosx)
= ( 1 + sinx)/cosx = RHS
Hope it helps You!
Similar questions