.
Prove the following.
(1) seco (1 - sino) (seco + tano) = 1
Answers
Answered by
10
LHS=seco(1-sino)(seco+tano)
= 1/coso(1-sino)(1/coso + sino/coso)
= 1/coso (1-sino)(1+sino/coso)
= 1-sin^2o/cos^2o
= cos^2o/cos^2o
= 1
=RHS
Answered by
6
Answer:
...
Step-by-step explanation:
LHS= sec0 ( 1 - sin0) (sec0 + tan0)
{sec0=1/cos0, tan0 = sin0/cos0}
= 1/cos0 (1 - sin0) (sec0 + sin0/cos0)
= (1/cos0 - sin0/cos0) (sec0 + sin0/cos0)
= (sec0 - tan0) ( sec0 + tan0)
= (sec sq 0 - tan sq 0)
{1 + tan sq 0 = sec sq 0}
= 1
Hence LHS = RHS
- hp
Similar questions