Math, asked by hansrajsharma9422, 9 months ago

.
Prove the following.
(1) seco (1 - sino) (seco + tano) = 1​

Answers

Answered by koushikj401
10

LHS=seco(1-sino)(seco+tano)

= 1/coso(1-sino)(1/coso + sino/coso)

= 1/coso (1-sino)(1+sino/coso)

= 1-sin^2o/cos^2o

= cos^2o/cos^2o

= 1

=RHS

Answered by himanshitirale
6

Answer:

...

Step-by-step explanation:

LHS= sec0 ( 1 - sin0) (sec0 + tan0)

{sec0=1/cos0, tan0 = sin0/cos0}

= 1/cos0 (1 - sin0) (sec0 + sin0/cos0)

= (1/cos0 - sin0/cos0) (sec0 + sin0/cos0)

= (sec0 - tan0) ( sec0 + tan0)

= (sec sq 0 - tan sq 0)

{1 + tan sq 0 = sec sq 0}

= 1

Hence LHS = RHS

- hp

Similar questions