prove the following 1). sin cube teta + cos cube teta divided sin teta +cos teta = 1-sin teta cos teta
Answers
Given to prove :-
SOLUTION:-
As we know the formula of a³+ b³
a³+ b³ = (a+b)(a²-ab + b²) By using this we can solve So,
Numerator is sin³θ + cos³θ By using above formula we get
_______________________
sin³θ + cos³θ = (sinθ+cosθ) (sin²θ - sinθcosθ + sin²θ)
__________________
So,
From trigonometric identities
We know that ,
sin²θ + cos²θ = 1
So,
LHS = RHS
Hence proved !
Used formulae:-
- a³+ b³ = (a+b)(a²-ab + b²)
- sin²θ + cos²θ = 1
___________________
Know more :-
Trigonometric Identities:-
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trigonometric relations:-
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trigonometric ratios:-
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj
Step-by-step explanation:
To Prove :+
sin³θ+cos³θ/sinθ+cosθ = 1 - sinθcosθ
Solution :-
Taking L.H.S :-
= sin³θ+cos³θ/sinθ+cosθ
= (sinθ+cosθ)³ - 3sinθcosθ(sinθ+cosθ)/sinθ+cosθ
[ ∴ a³ + b³ = (a + b)³ - 3ab(a + b)]
Taking "sinθ+cosθ" common :-
= sinθ+cosθ[(sinθ+cosθ)² - 3sinθcosθ]/sinθ+cosθ
= (sinθ+cosθ)² - 3sinθcosθ
= sin²θ + cos²θ + 2sinθcosθ - 3sinθcosθ
= 1 - sinθcosθ
[ ∴ sin²θ + cos²θ = 1]
Know More :-
Trigonometric Identities :-
1) sin²A + cos²A = 1
2) sec²A - tan²A = 1
3) csc²A - cot²A = 1