prove the following...
Attachments:
Answers
Answered by
3
Answer:
1+cosθ+cos2θ+...+cosnθ=ℜ(1+cosθ+isinθ+cos2θ+isin2θ+...+cosnθ++isinnθ)=ℜ(1+eiθ+e2iθ+...+eniθ)=ℜ(e(n+1)iθ−1eiθ−1)=ℜ(e(n+1)2iθeiθ2⋅e(n+1)2iθ−e−(n+1)2iθeiθ2−e−iθ2)=ℜ(e(n+1)2iθeiθ2⋅sin(n+1)θ2sinθ2)=ℜ(eiθn2⋅sin(n+1)θ2sinθ2)=cosnθ2⋅sin(n+1)θ2sinθ2=12sin(nθ2+(n+1)θ2)−sin(nθ2−(n+1)θ2)sinθ2=12sin((n+12)θ)+sinθ2sinθ2
Answered by
26
see solution in image ......
Attachments:
Similar questions