Math, asked by kruthikagenious04, 10 months ago

Prove the following!​

Attachments:

Answers

Answered by paytmM
8

\Large{\underline{\underline{\mathfrak{\green{\bf{QUESTION}}}}}}.

\Large\underline{\bf{\:To\:Prove}}

\mapsto\pink{\sf{\:\dfrac{1-\sin \theta}{1+ \sin \theta}\:=\:(\sec \theta - \tan \theta)^2}}

\Large{\underline{\underline{\mathfrak{\orange{\bf{Prove}}}}}}.

\mapsto\pink{\sf{\:\dfrac{1-\sin \theta}{1+ \sin \theta}}}

\:\:\:\:\:\small\orange{\sf{\:( Multiply\:by\:1-\sin \theta \:numerator\:and\:denominator   )}}

\mapsto\sf{\:\dfrac{(1-\sin \theta)(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}}

\mapsto\sf{\:\dfrac{(1+\sin^2 \theta-2\times\sin \theta)}{(1^2-\sin^2 \theta)}}

\:\:\:\:\:\small\orange{\sf{\:\left(1-\sin^2 \theta\:=\:\cos^2 \theta \right)}}

\mapsto\sf{\:\dfrac{(1+\sin^2 \theta-2\times\sin \theta)}{(\cos^2  \theta)}}

\mapsto\sf{\:\dfrac{1}{\cos^2 \theta}+\dfrac{\sin^2 \theta}{\cos^2 \theta}-2\times \dfrac{\sin \theta}{\cos^2 \theta}}

\:\:\:\:\:\small\orange{\sf{\:\left(\dfrac{1}{\cos^2 \theta}\:=\:\sec^2 \theta \right)}}

\:\:\:\:\:\small\orange{\sf{\:\left(\dfrac{\sin \theta}{\cos \theta}\:=\:\tan \theta \right)}}

\mapsto\sf{\:\sec^2 \theta+\tan^2 \theta-2\times\tan \theta\times\sec \theta}

\:\:\:\:\:\small\orange{\sf{\:\left[x^2 + y^2  - 2xy\:=\:(x-y)^2\right]}}

\mapsto\sf{\:(\sec \theta+\tan \theta)^2}

= R.H.S.

That's proved.

______________________

Answered by devarsh12
0

BCCI said that IPL could be held after monsoon.. :)

Similar questions