Math, asked by pari1027, 11 months ago

Prove the following​

Attachments:

Answers

Answered by ANGEL123401
16

{\huge{\underline{\underline{\bold{\rm{SolutiOn:}}}}}}

Taking LHS:-

2 \sin {}^{ - 1}  \frac{3}{5}  \\

We know that,

 \huge \boxed{2 \sin {}^{ - 1} x =  \sin {}^{ - 1} 2x  \sqrt{1 -  {x}^{2} } }

 \sin {}^{ - 1} 2 \times  \frac{3}{5} \sqrt{1 -  (\frac{3}{5})  {}^{2} }   \\  =  \sin {}^{ - 1}  \frac{6}{5}  \times  \frac{4}{5}  \\  =  \sin {}^{ - 1}  \frac{24}{25}

Also,

  \huge \boxed{\sin {}^{ - 1}  =  \tan {}^{ - 1}  \frac{x}{ \sqrt{1 -  {x}^{2} } } }

  = \tan {}^{ - 1}  \frac{ \frac{24}{25} }{ \sqrt{1 -  \frac{576}{625} } }  \\  =  \tan {}^{ - 1}  \frac{ \frac{24}{25} }{ \frac{7}{25} \: } \\  =  \tan {}^{ - 1}  \frac{24}{7}

= RHS

______________ᴘʀᴏᴠᴇᴅ.

Answered by sprao53413
1

Answer:

Please see the attachment

Attachments:
Similar questions