Math, asked by radicalbrawlers, 10 months ago

Prove the following​

Attachments:

Answers

Answered by TrickYwriTer
3

Step-by-step explanation:

Given -

1/√2-1 + 2/√3+1 = √2 + √3

To Show -

LHS = RHS

Now,

Rationalising the denominator -

1/√2-1 × √2+1/√2+1

= √2+1/2-1

  • = √2 + 1

And

2/√3+1 × √3-1/√3-1

= 2(√3-1)/3-1

= 2(√3-1)/2

  • = √3 - 1

Now,

√2 + 1 + √3 - 1

= √2 + √3

LHS = RHS

Hence,

Proved..

Attachments:
Answered by anshi60
18

QuEsTiOn :-

Prove that

 \frac{1}{ \sqrt{2} - 1 }   +  \frac{2}{ \sqrt{3} + 1 }  =  \sqrt{2}  +  \sqrt{3}

 \huge{ \underline{ \underline{ \green{ \sf{ PrOoF:- }}}}}

Taking LHS :-

   \frac{1}{ \sqrt{2} - 1 }  +  \frac{2}{ \sqrt{3} + 1 }

Rationalising the denominator =>

 =  \frac{1 \times ( \sqrt{2} + 1) }{( \sqrt{2} - 1)  (\sqrt{2}  + 1) } +  \frac{2 \times ( \sqrt{3} - 1) }{( \sqrt{3} + 1)( \sqrt{3} - 1)   }    \\  \\  =  \frac{ \sqrt{2}  + 1}{  { (\sqrt{2} )}^{2}  -  {1}^{2}  } +  \frac{2 \sqrt{3}  - 2}{ {( \sqrt{3} )}^{2}  -  {1}^{2} }   \\  \\

Identity used :-

(a - b)(a + b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ \sqrt{2}  + 1}{ 2 - 1} +  \frac{2 \sqrt{3}  - 2 }{3 - 1}   \\  \\  =  \frac{ \sqrt{2}   + 1 }{1}  +  \frac{2( \sqrt{3}  -  1) }{2}  \\  \\  =  \sqrt{2}  + 1 +  \sqrt{3}  - 1 \\  \\  =  \sqrt{2}  +  \sqrt{3}  = RHS \\  \\ {\green{\boxed{\large{\bold{LHS \:  =  \: RHS}}}}} \\  \\

HeNcE PrOvEd

Similar questions