Math, asked by hsdeep1961, 10 months ago

Prove the following ​

Attachments:

Answers

Answered by davisshikhar
1

 (\frac{x {}^{b} }{x {}^{a} } ) {}^{b + a - c}  \times ( \frac{x {}^{c} }{x {}^{b} } ) {}^{c  +  b -  a}  \times ( \frac{x {}^{a} }{ {x}^{c} }) {}^{c + a - b}

 \frac{x {}^{b {}^{2} +  ba - bc} }{x {}^{a b + a {}^{2}  - ac} }  \times  \frac{x {}^{c {}^{2}  + bc - ac} }{x {}^{bc + b {}^{2}  - ab} }  \times  \frac{x {}^{ac + a {}^{2} - ab } }{x {}^{c {}^{2}  + ac - bc} }

using \: exponent \: laws \\  \frac{x {}^{y} }{x {}^{b} }  = x {}^{y - b}

x {}^{b {}^{2} + ab - ba - (ab + a {}^{2} - ca)  }   \times x {}^{c {}^{2}  + bc - ab - (bc + b {}^{2} - ab) }  \times x {}^{ac + a {}^{2} - ab - (c {}^{2} + ac - bc)  }

x {}^{b {}^{2} + ab - bc - ab - a {}^{2}  + ac }  \times x {}^{c {}^{2} + bc - ac - bc - b {}^{2} + ab  }  \times x {}^{ac + a {}^{2} - ab - c {}^{2} - ac + ba  }

x {}^{b {}^{2}  - a {}^{2}  + ac - bc}  \times x {}^{c {}^{2} - b {}^{2} +  ab  - ac}  \times x {}^{a {}^{2} - c {}^{2} + bc - ab  }

using \: exponential \: law \\ x {}^{y}  \times x {}^{b}  = x {}^{y + b}

x {}^{b {}^{2} - a {}^{2}  + ac -   bc  + c {}^{2} - b {}^{2}  + ab - ac + a {}^{2}  - c {}^{2}  + bc - ab }

x {}^{0}  = 1

HOPE IT HELPS

Similar questions