Math, asked by mgirap55, 7 months ago

prove the following​

Attachments:

Answers

Answered by InfiniteSoul
2

\sf{\orange{\underline{\huge{\mathsf{Solution}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{CosA}{1 - tanA} +  \dfrac{sin^2A}{SinA - CosA} = Sin A + CosA}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{tanA = \dfrac{SinA}{CosA}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{CosA}{1 - \dfrac{sinA}{CosA}} +  \dfrac{sin^2A}{SinA - CosA} = Sin A + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{CosA}{\dfrac{cosA - sinA}{CosA}} +  \dfrac{sin^2A}{SinA - CosA} = Sin A + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ {CosA}\div \dfrac{cosA - sinA}{CosA} +  \dfrac{sin^2A}{SinA - CosA} = Sin A + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{{CosA}\times \dfrac{CosA}{CosA - SinA} +  \dfrac{sin^2A}{SinA - CosA} = Sin A + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{Cos^2A}{CosA - SinA } +  \dfrac{sin^2A}{SinA - CosA} = Sin A + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{Cos^2A}{- ( SinA - CosA )} +  \dfrac{sin^2A}{SinA - CosA} = Sin A + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ - Cos^2A}{SinA - CosA } +  \dfrac{sin^2A}{SinA - CosA} = Sin A + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{-Cos^2A + Sin^2A}{SinA - CosA} = SinA + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{Sin^2A - Cos^2A}{SinA - CosA} = SinA + CosA}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{A^2 - B^2=( A + B) ( A - B)}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{( sinA - CosA)( sinA + CosA)}{SinA - CosA} = SinA + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{( sinA - CosA)\cancel{( sinA + CosA)}}{\cancel{SinA - CosA}} = SinA + CosA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ SinA + CosA = SinA + CosA}}

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀.....Hence Proved

⠀⠀⠀⠀

Answered by Anonymous
107

 \tt \color{green} \large \underline{ \underline{ Solution}} \\  \\  \\ \\   \tt \: L. H. S \\  \\  \tt   \frac{cosA}{ \frac{1  - sinA}{cosA} }  +  \frac{ {sin}^{2}A }{sinA - cosA}  \\  \\  \\  \\  \tt  : \implies  \frac{cosA}{ \frac{cosA - sinA}{cosA} }  +  \frac{ {sin}^{2} A}{sinA - cosA}  \\  \\  \\   \\ \tt   : \implies  \frac{cosA \times cosA}{cosA - sinA}    -  \frac{ {sin}^{2}A }{cosA - sinA}  \\  \\  \\  \\  :  \implies \tt  \frac{ {cos}^{2}A }{cosA - sinA }  -  \frac{ {sin}^{2} A}{cosA - sinA}  \\  \\  \\  \\  \tt :  \implies  \frac{ {cos}^{2} A -  {sin}^{2} A}{ \big(cosA - sinA \big)}  \\  \\  \\  \\  \tt : \implies \frac{  \cancel{\big(cosA - sinA \big) } \big(cosA + sinA \big)}{ \cancel{cosA - sinA}}   \\  \\  \\  \\  \tt  :  \implies cosA + sinA \\  \\  \\  \\  \tt \color{green}L. H. S = R. H. S
Similar questions