Math, asked by mgirap55, 7 months ago

prove the following​

Attachments:

Answers

Answered by kaleruamand
4

Step-by-step explanation:

Solution is attached as a pic for ur reference.

Attachments:
Answered by VishnuPriya2801
35

Answer:-

To Prove:

 \sf \large \: \sec ^{2}  A  -  \frac{ { \sin}^{2}A - 2 { \sin}^{4}  A}{2 \cos ^{4} A -  { \cos}^{2} A}  = 1 \\  \\

\implies \sf \:  { \sec}^{2}A -  \dfrac{ { \sin }^{2} A(1 - 2 \sin ^{2}A) }{ { \cos}^{2} A(2 \cos ^{2}A  - 1)}   = 1

We know that,

sin² A + cos² A = 1

sin² A = 1 - cos² A

 \implies \sf \:  { \sec}^{2} A-  \dfrac{ { \sin }^{2}A \{1 - 2(1 -  { \cos \:  }^{2}  A)\}}{ { \cos }^{2} (2 { \cos}^{2}A - 1)  }  = 1 \\  \\ \implies \sf \:  { \sec}^{2} A -  \frac{ { \sin }^{2} A(1 - 2 + 2  { \cos }^{2} A - 1)}{ { \cos}^{2} A (2 { \cos }^{2} A - 1) }  = 1 \\  \\ \implies \sf \:  { \sec}^{2} A -   \frac{ { \sin }^{2} A \cancel{ (2cos ^{2} A - 1)}}{ { \cos}^{2} A \cancel{(2cos ^{2} A - 1)} }  = 1 \\  \\

using sin² A/cos² = tan² A we get,

 \implies \sf \:  { \sec}^{2} A -  \tan ^{2} A = 1

using the identity sec² A - tan² A = 1 in LHS we get,

1 = 1.

Hence, Proved.

Similar questions