Math, asked by mgirap55, 5 months ago

prove the following​

Attachments:

Answers

Answered by InfiniteSoul
1

\sf{\orange{\underline{\huge{\mathsf{Solution}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ cot^2A - cot^2B = \dfrac{cos^2A - cos^2B}{sin^2A . Sin^2B}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Cot^2\theta = \dfrac{Cos^2\theta}{Sin^2\theta}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{Cos^2A}{Sin^2A} - \dfrac{Cos^2B}{Sin^2B} = \dfrac{cos^2A - cos^2B}{sin^2A . Sin^2B}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{\dfrac{Cos^2A.Sin^2B - Cos^2BSin^2A}{Sin^2B.Sin^2A} = \dfrac{cos^2A - cos^2B}{sin^2A . Sin^2B}}}

⠀⠀

\sf{\red{\boxed{\bold{Sin^2\theta = 1 - Cos^2\theta}}}}

⠀⠀⠀

\sf: \implies\: {\bold{\dfrac{Cos^2A( 1 - Cos^2B)  - Cos^2B( 1 - Cos^2A)}{Sin^2B.Sin^2A} = \dfrac{cos^2A - cos^2B}{sin^2A . Sin^2B}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{\dfrac{Cos^2A - Cos^2A . Cos^2B - Cos^2B + Cos^2B. Cos^2A}{Sin^2B.Sin^2A} = \dfrac{cos^2A - cos^2B}{sin^2A . Sin^2B}}}

⠀⠀

\sf: \implies\: {\bold{\dfrac{Cos^2A - \cancel{Cos^2A . Cos^2B} - Cos^2B + \cancel{ Cos^2A . Cos^2B}}{Sin^2B.Sin^2A} = \dfrac{cos^2A - cos^2B}{sin^2A . Sin^2B}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{\dfrac{Cos^2A - Cos^2B }{Sin^2A.Sin^2B} = \dfrac{cos^2A - cos^2B}{sin^2A . Sin^2B}}}

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀.......Hence Proved

⠀⠀

⠀⠀

⠀⠀⠀⠀

Similar questions