Math, asked by aishu050405, 2 months ago

prove the following ​

Attachments:

Answers

Answered by amitnrw
0

Given : cotA/(1 - tanA)  +  tanA/(1 - cotA)  = 1 + tanA + cotA

To Find : Prove

Solution:

LHS =  cotA/(1 - tanA)  +  tanA/(1 - cotA)

use cotA = cosA/sinA   and tanA  = sinA/CosA

= (cosA/sinA)/(1 - sinA/cosA)   +  (sinA/CosA)/(1  - cosA/sinA)

=  (cosA/sinA)/((cosA - sinA)/cosA)   +  (sinA/CosA)/()sinA - cosA)/sinA)

= cos²A/sinA(cosA - sinA)   + sin²A/cosA(sinA - cosA)

= cos²A/sinA(cosA - sinA)   - sin²A/cosA(cosA - sinA)

=  (cos³A - sin³A)/sinAcosA(cosA - sinA)

using identity a³ - b³  = (a - b)(a²  + b²  + ab)

= (cosA - sinA)( cos²A + sin²A + cosAsinA)/ sinAcosA(cosA - sinA)

= ( cos²A + sin²A + cosAsinA) /  sinAcosA

= cos²A / sinAcosA +  sin²A / sinAcosA +  cosAsinA/sinAcosA

= cos A / sinA  +  sin A / cosA +  1

= cotA  + tanA + 1

=  1 + tanA + cotA

= RHS

QED

Hence proved

cotA/(1 - tanA)  +  tanA/(1 - cotA)  = 1 + tanA + cotA

Learn More

{sin x - cos x}, π/4

brainly.in/question/15287996

show that sin / cosec -1 + cos / 1+sec = sin cos /sin - cos - Brainly.in

brainly.in/question/8548258

Answered by pulakmath007
2

SOLUTION

TO PROVE

 \displaystyle \sf{ \frac{ \cot A}{1 -  \tan A}  +  \frac{ \tan A}{1 -  \cot A} =1 +    \tan A +  \cot A }

PROOF

LHS

 \displaystyle \sf{ =  \frac{ \cot A}{1 -  \tan A}  +  \frac{ \tan A}{1 -  \cot A} }

 \displaystyle \sf{  = \frac{ \cot A}{1 -  \tan A}  +  \frac{ \tan A}{1 -   \displaystyle \sf{\frac{1}{ \tan A} } }}

 \displaystyle \sf{  = \frac{ \cot A}{1 -  \tan A}  +  \frac{ \tan A}{ \displaystyle \sf{\frac{\tan A - 1}{ \tan A} } }}

 \displaystyle \sf{  = \frac{ \cot A}{1 -  \tan A}  +  \frac{ {\tan}^{2}  A}{ \tan A - 1}}

 \displaystyle \sf{  = \frac{ \cot A}{1 -  \tan A}   -   \frac{ {\tan}^{2}  A}{ 1-  \tan A}}

 \displaystyle \sf{  = \frac{ \cot A - {\tan}^{2}  A}{1 -  \tan A} }

 \displaystyle \sf{  = \frac{ \cot A -1 + 1 -  {\tan}^{2}  A}{1 -  \tan A} }

 \displaystyle \sf{  = \frac{ \cot A - \cot A. \tan A+ 1 -  {\tan}^{2}  A}{1 -  \tan A} }

 \displaystyle \sf{  = \frac{ \cot A (1-  \tan A)+ (1 -  {\tan}^{2}  A)}{1 -  \tan A} }

 \displaystyle \sf{  = \frac{ \cot A (1-  \tan A)}{1 -  \tan A} +  \frac{  (1 -  {\tan}^{2}  A)}{1 -  \tan A}}

 \displaystyle \sf{  =  \cot A +  \frac{  (1  +   \tan A)(1 -  \tan A)}{1 -  \tan A}}

 \displaystyle \sf{  =  \cot A +   1  +   \tan A}

 \displaystyle \sf{  =  1  +   \tan A + \cot A}

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that : tan9A - tan6A -tan3A = tan9A.tan 6A.tan tan 3A

https://brainly.in/question/9394506

2. the value of (1+tan32°)(1+tan13°)/(1+tan23°)(1+tan22°) is

https://brainly.in/question/29883463

Similar questions