prove the following
Answers
Given : cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA
To Find : Prove
Solution:
LHS = cotA/(1 - tanA) + tanA/(1 - cotA)
use cotA = cosA/sinA and tanA = sinA/CosA
= (cosA/sinA)/(1 - sinA/cosA) + (sinA/CosA)/(1 - cosA/sinA)
= (cosA/sinA)/((cosA - sinA)/cosA) + (sinA/CosA)/()sinA - cosA)/sinA)
= cos²A/sinA(cosA - sinA) + sin²A/cosA(sinA - cosA)
= cos²A/sinA(cosA - sinA) - sin²A/cosA(cosA - sinA)
= (cos³A - sin³A)/sinAcosA(cosA - sinA)
using identity a³ - b³ = (a - b)(a² + b² + ab)
= (cosA - sinA)( cos²A + sin²A + cosAsinA)/ sinAcosA(cosA - sinA)
= ( cos²A + sin²A + cosAsinA) / sinAcosA
= cos²A / sinAcosA + sin²A / sinAcosA + cosAsinA/sinAcosA
= cos A / sinA + sin A / cosA + 1
= cotA + tanA + 1
= 1 + tanA + cotA
= RHS
QED
Hence proved
cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA
Learn More
{sin x - cos x}, π/4
brainly.in/question/15287996
show that sin / cosec -1 + cos / 1+sec = sin cos /sin - cos - Brainly.in
brainly.in/question/8548258
SOLUTION
TO PROVE
PROOF
LHS
= RHS
Hence proved
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. prove that : tan9A - tan6A -tan3A = tan9A.tan 6A.tan tan 3A
https://brainly.in/question/9394506
2. the value of (1+tan32°)(1+tan13°)/(1+tan23°)(1+tan22°) is
https://brainly.in/question/29883463