Math, asked by ishita8496, 4 months ago

prove the following​

Attachments:

Answers

Answered by sandy1816
3

\huge\underline\bold\blue{★Answer★}

 =  \frac{1 + cos \theta - sin \theta}{1 + cos \theta + sin \theta} \\  =  \frac{ \frac{1 + cos \theta - sin \theta  }{ cos \theta} }{ \frac{1 + cos \theta + sin \theta}{cos \theta} }  \\  =  \frac{sec \theta - tan \theta + 1}{sec \theta + tan \theta + 1}  \\  =  \frac{sec \theta - tan \theta + 1}{(sec \theta + tan \theta) + ( {sec}^{2}  \theta -  {tan }^{2 }  \theta)}  \\  =  \frac{sec \theta - tan \theta + 1}{(sec \theta + tan \theta)(1 + sec \theta - tan \theta)}  \\  =  \frac{1}{sec \theta + tan \theta}  \\  =  \frac{1}{ \frac{1 + sin \theta}{cos \theta } }  \\  =  \frac{cos \theta}{1 + sin \theta}

Similar questions
Computer Science, 11 months ago