prove the following:
Attachments:
Answers
Answered by
2
Step-by-step explanation:
Given :-
(Cotθ+Cosθ)/(Cotθ-Cosθ)
To find :-
Prove that (Cotθ+Cosθ)/(Cotθ-Cosθ)
= (1+Sinθ)/(1-Sinθ)
Solution :-
On taking LHS of the equation
(Cot θ + Cos θ)/( Cot θ - Cos θ)
=> [(Cos θ/Sin θ) + Cos θ] /
[(Cos θ/Sin θ) -Cos θ]
=>[(Cosθ+CosθSinθ)/Sinθ]/[(Cosθ-CosθSinθ)/Sinθ]
=> [(Cosθ+CosθSinθ)/Sinθ] /
[Sinθ/(Cosθ-CosθSinθ)]
=> (Cosθ+CosθSinθ)/(Cosθ-CosθSinθ)
=> [Cosθ(1+Sinθ)] / [Cosθ(1-Sinθ)]
=> (1+ Sin θ ) / (1 - Sin θ)
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
(Cotθ + Cos θ )/(Cot θ-Cos θ )
= (1+ Sin θ ) / (1 - Sin θ)
Used formulae:-
→ Cot θ = Cos θ / Sin θ
Similar questions