Math, asked by sazanasubeedy, 8 hours ago

prove the following

Attachments:

Answers

Answered by VεnusVεronίcα
12

We have two methods to do the above question.

 \:

M E T H O D 1 :

 \sf   \implies \:  sin( \: 112 \degree) + cos( \: 74 \degree) - sin( \: 68 \degree) + cos( \: 106 \degree)

 \sf \implies \: sin( \: 90 \degree + 22 \degree) + cos ( \: 90 \degree - 16 \degree) - sin( \: 90 \degree - 22 \degree) + cos( \: 90 \degree + 16 \degree)

 \sf \implies \:  cos( \: 22 \degree) + sin( \: 16 \degree ) - cos( \: 22 \degree) - sin( \: 16 \degree)

 \sf \implies \: cos( \: 22 \degree) - cos( \: 22 \degree) + sin( \: 16 \degree) - sin( \: 16 \degree)

\sf\implies~0+0

 \sf \implies \: 0

 \:

N O T E :

 \sf \implies \: sin( \: 90 \degree + 22 \degree) = cos( \: 22 \degree)

  • II quadrant is positive for sin

 \sf \implies \: cos( \: 90  \degree- 16 \degree) = sin( \: 16 \degree)

  • I quadrant is positive for cos

 \sf \implies \:  -  \: sin( \: 90\degree - 22 \degree) =  -  \: cos( \: 22 \degree)

  • I quadrant is positive for sin

 \sf \implies \: cos( \: 90 \degree + 16 \degree) =  -  \: sin( \: 16 \degree)

  • II quadrant is negative for cos

 \\

M E T H O D 2 :

 \sf \implies \: sin( \: 112 \degree) + cos( \: 74 \degree) - sin( \: 68 \degree) + cos( \: 106 \degree)

 \sf \implies \: cos( \: 106 \degree) + cos( \: 74 \degree) + sin( \: 112 \degree) - sin( \: 68 \degree)

 \sf \implies \: 2 \: cos \bigg(  \: \dfrac{106 \degree + 74 \degree}{2}  \bigg) \: cos \bigg(  \: \dfrac{106 \degree - 74 \degree}{2} \bigg ) + 2 \: sin \bigg(  \: \dfrac{112 \degree - 68 \degree}{2}  \bigg) \: cos \bigg(   \: \dfrac{112 \degree + 68 \degree}{2}  \bigg)

 \sf \implies \: 2 \: cos \bigg( \:  \dfrac{180 \degree}{2}  \bigg) \: cos \bigg( \:   \dfrac{32 \degree}{2}  \bigg) + sin \bigg(  \: \dfrac{44 \degree}{2}  \bigg) \: cos \bigg(  \:   \dfrac{180 \degree}{2} \bigg)

 \sf \implies \: 2 \: cos ( \: 90 \degree) \: cos( \: 16 \degree) + 2 \: sin( \: 22 \degree) \: cos( \: 90 \degree)

\sf\implies~ 2~(~0~)~cos(~16\degree)+2~sin(~22\degree)~(~0~)

\sf\implies~0+0

 \sf \implies \: 0

 \:

N O T E :

 \sf \implies \: cos( \: 90 \degree) = 0

\sf\implies~ sinC-sinD=2~sin\bigg(~\dfrac{C-D}{2}~\bigg)~ cos\bigg(~\dfrac{C+D}{2}~\bigg)

\sf\implies~cosC+cosD=2~cos\bigg(~\dfrac{C+D}{2}~\bigg)~cos\bigg(~\dfrac{C-D}{2}~\bigg)

Similar questions