Math, asked by hello159856, 17 days ago

Prove the following :
4cosx cos(x+π/3) + cos²(π - 2π/3) = cos3x

(inappropriate answer will be reported)

I will mark it as brainliest who will give the right answer.​

Answers

Answered by xxblackqueenxx37
55

Question :-

 \sf \:  = 4 \cos(x)  \cos(x +  \frac{\pi}{3} )  +  \cos^{2} (\pi -  \frac{2\pi}{3} ) =  \cos(3x)  \\

Answer :-

 \sf \: L.H.S = 4 \cos(x)  \times  \cos(x +  \frac{\pi}{3} )  \times  { \cos }^{2} (\pi -  \frac{2\pi}{3} ) \\

 \sf \:  = 4 \cos(x)  \times (cos \: x \: cos \frac{\pi}{3}  - sin \: x \: sin \:  \frac{\pi}{3} ) \times (cos \: x \: cos \:  \frac{\pi}{3}  +  \sin \: x  \:  \sin \frac{\pi}{3} )  \\

 \sf \:  = 4 \cos(x)  \times ( \frac{1}{2}  \cos \: x \:  -  \frac{ \sqrt{3} }{2}  \sin \: x)  \times ( \frac{1}{2} cos \: x +  \frac{ \sqrt{3} }{2}  \sin \: x) \\

 \sf \:  = 4 \cos(x)  \times ( \frac{1}{4}  {cos}^{2} x -  \frac{3}{4}  {sin}^{2} x) \\

 \sf \:  =  {cos}^{3} x - 3 { \sin }^{2} x \cos(x)

 \sf \:  =  {cos}^{3} x - 3(1 -  {cos}^{2} x) \cos(x)

 \sf \:  =  \cos ^{3} x - 3 \cos(x)  + 3cos ^{3} x

 \sf \:  = 4 \cos ^{3} x - 3 \cos(x)

 \sf \:  =  \cos(3x)

 \sf \:  = R.H.S

= hence proved !!

_________________________________

scroll in (→) direction to see the full answer

Similar questions