Math, asked by roy2005tia, 1 month ago

prove the following and please don't scam​

Attachments:

Answers

Answered by takeitall393
1

(i)

cos∅ x tan∅

cos∅ x sin∅/cos∅ (as tan∅ = sin∅/cos∅)

sin∅

LHS= RHS

(ii)

sin∅ x cot∅

sin∅ x cos∅/sin∅ (as cot∅ = cos∅/sin∅)

cos∅

LHS= RHS

Answered by MathCracker
59

Question :-

Prove that :

 \sf{(i) \cos \theta \tan \theta =  \sin \theta} \\   \\  \sf{ (ii)\sin \theta \cot \theta =  \cos \theta }

Solution :-

To Prove :

 \sf{(i) \cos \theta \tan \theta =  \sin \theta}

Proof :

Let,

  •  \sin \theta =  \sf{ RHS}

We know,

\sf:\longmapsto{ \tan \theta =  \frac{ \sin \theta }{ \cos \theta }  } \\

Then,

\sf:\longmapsto{ \cancel {\cos \theta }  \:  \frac{ \sin \theta }{ \cancel{ \cos \theta }} =  \sin \theta  } \\  \\ \sf:\longmapsto{ \sin \theta =  \sin \theta  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence Proved !

==============================================

To prove :

 \sf{(ii) \sin \theta \cot \theta =  \cos \theta}

Proof :

Let,

  •  \sf{ \cos \theta  = RHS \:  }

We know,

\sf:\longmapsto{ \cot \theta =  \frac{ \cos \theta}{ \sin \theta }  } \\

Then,

\sf:\longmapsto{ \cancel{ \sin \theta} \:  \frac{ \cos \theta }{ \cancel{ \sin \theta}} =  \cos \theta } \\  \\ \sf:\longmapsto{ \cos \theta =  \cos \theta} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence Proved !

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

1. (3x+y)² simplify please don't scam with me please don't scam .

https://brainly.in/question/40478464

Similar questions