Prove the following by PMI for all n ∈ N.
1. 1.3 + 2.4 + 3.5 + ⋯ ... ... =n(n+1)(2n+7)/6
Answers
Step-by-step explanation:
Suppose P (n): 1.3 + 2.4 + 3.5 + … + n. (n + 2) = 1/6 n(n + 1) (2n + 7)
Now let us check for n = 1,
P (1): 1.3 = 1/6 × 1 × 2 × 9
: 3 = 3
P (n) is true for n = 1.
Then, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.
P (k): 1.3 + 2.4 + 3.5 + … + k. (k + 2) = 1/6 k(k + 1) (2k + 7) … (i)
Therefore,
1.3 + 2.4 + 3.5 + … + k. (k + 2) + (k + 1) (k + 3)
Then, substituting the value of P (k) we get,
= 1/6 k (k + 1) (2k + 7) + (k + 1) (k + 3) by using equation (i)
= (k + 1) [{k(2k + 7)/6} + {(k + 3)/1}]
= (k + 1) [(2k2 + 7k + 6k + 18)]/6
= (k + 1) [2k2 + 13k + 18]/6
= (k + 1) [2k2 + 9k + 4k + 18]/6
= (k + 1) [2k(k + 2) + 9(k + 2)]/6
= (k + 1) [(2k + 9) (k + 2)]/6
= 1/6 (k + 1) (k + 2) (2k + 9)
P (n) is true for n = k + 1
Thus, P (n) is true for all n ∈ N