PROVE THE FOLLOWING COMMUTATIVE LAW: A+B=B+A A.B=B.A DE MORGAN’S LAW: (A+B)’=A’.B’ (A.B)’=A’+B’
Answers
Answer:
The proving is mentioned below :-
Step-by-step explanation:
Let,
U = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
A =.{ 1, 2, 3, 4, 5.}
B = { 2, 4, 6, 8 10 }
We have,
For A + B = B + A
A + B = { 1, 2, 3, 4, 5 } + { 2, 4, 6, 8, 10 }
= { 1, 2, 3, 4, 5, 6, 8, 10 }
B + A = { 2, 4, 6, 8, 10 } + { 1, 2, 3, 4, 5 }
= { 1, 2, 3, 4, 5 ,6, 8, 10 }
Hence, A + B = B + A : proved !
For A n B = B n A
A n B = { 1, 2, 3, 4, 5 } n { 2, 4, 6, 8, 10 }
= { 2, 4 }
B n A = { 2, 4, 6, 8, 10 } n { 1, 2, 3, 4, 5 }
= { 2, 4 }
Hence, A n B = B n A : proved
For ( A + B )' = A' n B'
( A + B )' = U - ( A + B )
= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } - { 1, 2, 3, 4, 5, 6, 8, 10}
= { 7, 9 }
A' = U - A
= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } - { 1, 2, 3, 4, 5 }
= { 6, 7, 8, 9, 10 }
B' = U - B
= { 1, 2, 3, 4, 5, 6, 6, 8, 9, 10 } - { 2, 4, 6, 8, 10 }
= { 1, 3, 5, 7, 9 }
A' n B' = { 6, 7, 8, 9, 10 } n { 1, 3, 5, 7, 9 }
= { 7, 9 }
Hence, ( A + B )' = A' n B'
Mark my answer as brainliest if it helped you. Also things like A.B and B.A doesn't exist here since those all are ordered pairs forms and here we don't need ordered pair forms.