Math, asked by priankadutta85, 9 months ago


Prove the following:
cos (90° - A) sin (90° - A)/
tan (90° - A)
= 1-COS^2 A​

Answers

Answered by ishwarsinghdhaliwal
2

L.H.S.

 \frac{cos (90° - A) sin (90° - A)}{tan (90° - A)}  \\ =  >   \frac{sinAcosA}{cot A }   \\ =  > \frac{sinAcosA}{ \frac{cosA}{sinA} }   \\ =  > sinAcosA \times  \frac{sinA}{cosA}  \\  =  > sin ^{2} A \\  =  > 1 - cos^{2} A

= RHS

Hence, proved.

Remember:

cos(90°-A)=SinA

Sin(90°-A)=cosA

tan(90°-A)=cotA

cotA= cosA/sinA

sin²A+cos²A=1 => sin²A=1-cos²A

Similar questions