Prove the following.
(cos θ − sin θ) ( 1 + tan θ)/
2cos
θ − 1
= sec θ
Answers
Answered by
2
Answer:
To Prove:
tanθ−secθ+1tanθ+secθ−1=cosθ1+sinθ
Solution:
L.H.S =tanθ−secθ+1tanθ+secθ−1
We can write, sec2θ−tan2θ=1
=tanθ−secθ+1tanθ+secθ−(sec2θ−tan2θ)
=tanθ−secθ+1tanθ+secθ−(secθ−tanθ)(secθ+tanθ)
=tanθ−secθ+1(tanθ+secθ){1−(secθ−tanθ)}
=tanθ−secθ+1(tanθ+secθ){1−secθ+tanθ}
=tanθ+secθ
=cosθsinθ+cosθ1
hence proved
Similar questions