Math, asked by amirkm445, 10 months ago

Prove the following: cot² θ - tan² θ = cosec² θ - sec² θ​

Answers

Answered by Anonymous
5

from LHS

cot²¢ - tan²¢

we know that ,

cot²¢ = cosec²¢ - 1

tan²¢ = sec²¢ - 1

hence ,. cosec²¢ - 1 - (sec²¢ - 1 )

cosec²¢ - 1 - sec²¢ + 1

cosec²¢ - sec²¢ RHS prooved ..

Hope it helps you

Mark as Brainliest

Answered by Anonymous
43

To Prove :-

\sf{ {\cot }^{2} \theta - {\tan}^{2} \theta = {\cosec }^{2} \theta - {\sec}^{2} \theta }\\

Solution :-

Taking LHS Firstly ,

\sf{\implies LHS = {\cot}^{2} \theta - {\tan}^{2} \theta }\\

  • \sf{\implies \cot \theta = \frac{\cos \theta}{\sin \theta} \: and \: \tan \theta = \frac{\sin \theta}{\cos \theta} }\\

Putting these values in LHS

\sf{\implies {\frac{\cos \theta }{\sin \theta } }^{2}   -{\frac{\sin \theta }{\cos \theta } }^{2}  }\\

Adding and Substracting 1.

\sf{\implies {\frac{\cos \theta }{\sin \theta } }^{2}   +1  -{\frac{\sin \theta }{\cos \theta } }^{2}  - 1  }\\

Taking minus common in last fraction and 1.

\sf{\implies ({\frac{\cos \theta }{\sin \theta } + 1 )}^{2}   - ({\frac{\sin \theta }{\cos \theta } }^{2} +1)  }\\

\sf{\implies \frac{ {\cos \theta}^{2} + {\sin \theta}^{2} }{ {\sin \theta }^{2} } - \frac{ {\sin \theta}^{2} + {\cos \theta }^{2} }{ {\cos \theta}^{2} }}\\

  • Now we know that cos² A + sin²A = 1 , So

\sf{\implies \frac{ 1 }{ {\sin \theta }^{2} } - \frac{ 1 }{ {\cos \theta}^{2} }}\\

  • \sf{\implies \sec \theta = \frac{ 1}{\cos \theta} \: and \cosec \theta = \frac{1}{\sin \theta}}\\

Now putting these values we get

\underline{\sf{\implies LHS = {\cosec}^{2} \theta - {\sec}^{2} \theta }}\\

So LHS = RHS

Hence Proved.

Similar questions