prove the following
(cotA/cosecA+1)+(cosecA+1/cotA)=2secA
Attachments:
Answers
Answered by
5
L.H.S.
= (cos A / sin A ) / (1/sin A + 1 ) + (1/sin A + 1 ) / (cos A / sin A )
= (cos A / sin A ) / ( 1+ sin A/ sin A) + ( 1+ sin A/ sin A) / (cos A / sin A )
= (cos A/ 1+ sin A) + (1+ sin A / cos A )
= cos2A + ( 1+ sin A)2 / cos ( 1+ sin A)
= cos2A + 1 + sin2A + 2 sin A / cos A( 1+ sin A)
= 1 + 1 + 2 sin A / cos A( 1+ sin A)
= 2 + 2 sin A / cos A( 1+ sin A)
= 2 ( 1+ sin A) / cos A( 1+ sin A)
= 2 / cos A
= 2 sec A = R.H.S.
L.H.S = R.H.S.
Hence, Proved
Answered by
0
cotA/(cosecA+1) + (cosecA+1)/cotA
=cot²A+(cosecA+1)²/cotA(cosecA+1)
=(cot²A+cosec²A+1+2cosecA)/cotA(cosecA+1)
=(2cosec²A+2cosecA)/cotA(cosecA+1)
=2cosecA(cosecA+1)/cotA(cosecA+1)
=2cosecA/cotA
=2secA
Similar questions