Math, asked by himanshu10062006, 2 months ago

prove the following equation

Attachments:

Answers

Answered by Anonymous
29

Given to prove:-

\dfrac{a^{-1}}{a^{-1}+b^{-1}} +\dfrac{a^{-1}}{a^{-1}-b^{-1}} = \dfrac{2b^2}{b^2-a^2}

SOLUTION :-

Take L.H.S

We shall take each term separately and solve it

\dfrac{a^{-1}}{a^{-1}+b^{-1}}

As we know that from exponent and laws

a^{-n} = \dfrac{1}{a^n}

So,

\dfrac{a^{-1}}{a^{-1}+b^{-1}}= \dfrac{\dfrac{1}{a} }{\dfrac{1}{a}+\dfrac{1}{b}  }

=\dfrac{\dfrac{1}{a} }{\dfrac{a+b}{ab} }

=\dfrac{ab}{(a)(a+b)}

\dfrac{ab}{a^2+ab}

So,

\dfrac{a^{-1}}{a^{-1}+b^{-1}}=\dfrac{ab}{a^2+ab}

________________

Now we shall solve 2nd term

\dfrac{a^{-1}}{a^{-1}-b^{-1}}

\dfrac{a^{-1}}{a^{-1}-b^{-1}}= \dfrac{\dfrac{1}{a} }{\dfrac{1}{a}-\dfrac{1}{b}  }

=\dfrac{\dfrac{1}{a} }{\dfrac{b-a}{ab} }

= \dfrac{ab}{(a)(b-a)}

=\dfrac{ab}{ab-a^2}

So,

\dfrac{a^{-1}}{a^{-1}-b^{-1}} =\dfrac{ab}{ab-a^2}

___________________

Now,

\dfrac{a^{-1}}{a^{-1}+b^{-1}} +\dfrac{a^{-1}}{a^{-1}-b^{-1}} =\dfrac{ab}{a^2+ab}+\dfrac{ab}{ab-a^2}

=\dfrac{ab(ab-a^2)+ab(a^2+ab)}{(ab+a^2)(ab-a^2)}

Denominator is in form of (a+b)(a-b) = a²-b²

 = \dfrac{a^2b^2 -a^3b + a^3b + a^2b^2}{a^2b^2 -a^4}

Take common a² to the denominator

 = \dfrac{a^2b^2  + a^2b^2}{a^2(b^2 -a^2)}

 = \dfrac{2a^2b^2 }{a^2(b^2 -a^2)}

 = \dfrac{2b^2 }{(b^2 -a^2)}

L.H.S = R.H.S

Hence proved !

Similar questions