Math, asked by KruciAl, 6 hours ago

Prove the following equation , image pasted below

Attachments:

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

  \left[  \begin{array}{r}\vec{a} \times  \vec{b} & \vec{b} \times  \vec{c} & \vec{c} \times  \vec{a} \end{array}\right]

  =   \left(\vec{a} \times  \vec{b}  \right) \cdot \left \{ \left(\vec{b} \times  \vec{c} \right)  \times  \left(\vec{c} \times  \vec{a} \right) \right \} \\

  =   \left(\vec{a} \times  \vec{b}  \right) \cdot \left[ \left \{ \left(\vec{b} \times  \vec{c} \right)  \cdot \vec{a} \right \} \vec{c}  -   \left \{ \left(\vec{b}   \times   \vec{c} \right) \cdot \vec{c}  \right \} \vec{a}\right] \\

  =   \left(\vec{a} \times  \vec{b}  \right) \cdot   \left \{  \left[ \vec{a} \:  \:  \vec{b} \:  \:  \vec{c} \right]  \vec{c}  -   0 \right \}\\

  =   \left(\vec{a} \times  \vec{b}  \right) \cdot   \left \{   \left[\begin{array}{r} \vec{a} &  \vec{b} &  \vec{c}  \end{array}\right]  \vec{c}  -   0 \right \}\\

  = \left[\begin{array}{r} \vec{a} &  \vec{b} &  \vec{c}  \end{array}\right]  \left(\vec{a} \times  \vec{b}  \right) \cdot  \vec{c} \\

  = \left[\begin{array}{r} \vec{a} &  \vec{b} &  \vec{c}  \end{array}\right]  \cdot \left[\begin{array}{r} \vec{a} &  \vec{b} &  \vec{c}  \end{array}\right]   \\

  = \left[\begin{array}{r} \vec{a} &  \vec{b} &  \vec{c}  \end{array}\right]^{2}      \\

Similar questions