Math, asked by symashah000, 2 months ago

prove the following fast waiting for the solution​

Attachments:

Answers

Answered by suhail2070
1

Answer:

LHS = RHS .

Step-by-step explanation:

lhs =  \tan(45 - a)  =  \frac{ \tan(45) -  \tan(a)  }{1 +  \tan(45)  \tan(a)  }  \\  \\  =   \frac{1 -  \tan(a) }{1 +  \tan(a) }  \\  \\  =  \frac{1 -  \frac{ \sin(a) }{ \cos(a) } }{1 +  \frac{ \sin(a) }{ \cos(a) } }  \\  \\  =  \frac{ \cos(a) -  \sin(a)  }{ \sin(a)  +   \cos(a)  }  \\  \\  \frac{ \cos(a) -  \cos(a)  }{ \cos(a) +  \sin(a)  }  = rhs.

Answered by mathdude500
2

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:tan(45 \degree \:  -  \: A) = \dfrac{cosA - sinA}{cosA + sinA}

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:tan(45\degree  - A)

We know,

\boxed{ \sf{ \:tan(x - y) =  \frac{tanx - tany}{1 + tanxtany}}}

So using this identity, we get

\rm \:  =  \:  \:\dfrac{tan45\degree  - tanA}{1 - tan45\degree  \:tanA}

We know,

\boxed{ \sf{ \:tan45\degree  = 1}}

So, using this, we get

\rm \:  =  \:  \:\dfrac{1 - tanA}{1 + 1 \times tanA}

\rm \:  =  \:  \:\dfrac{1 - tanA}{1 +  tanA}

We know,

\boxed{ \sf{ \:tanx =  \frac{sinx}{cosx}}}

So, using this, we get

\rm \:  =  \:  \:\dfrac{1 - \dfrac{sinA}{cosA} }{1 + \dfrac{sinA}{cosA} }

\rm \:  =  \:  \:\dfrac{\dfrac{cosA - sinA}{cosA} }{\dfrac{cosA + sinA}{cosA} }

\rm \:  =  \:  \:\dfrac{cosA - sinA}{cosA + sinA}

Hence, Proved

Alternative Method :-

Consider RHS

\rm :\longmapsto\:\:  \:\dfrac{cosA - sinA}{cosA + sinA}

Divide numerator and denominator by cosA, we get

\rm \:  =  \:  \:\dfrac{\dfrac{cosA - sinA}{cosA} }{\dfrac{cosA + sinA}{cosA} }

\rm \:  =  \:  \:\dfrac{1 - \dfrac{sinA}{cosA} }{1 + \dfrac{sinA}{cosA} }

\rm \:  =  \:  \:\dfrac{1 - tanA}{1 +  tanA}

\rm \:  =  \:  \:\dfrac{1 - tanA}{1 + 1 \times tanA}

\rm \:  =  \:  \:\dfrac{tan45\degree  - tanA}{1 - tan45\degree  \:tanA}

\rm \:  =  \:  \:tan(45\degree  - A)

Hence, Proved

Additional Information :-

\boxed{ \sf{ \:sin(x + y) = sinxcosy + sinycosx}}

\boxed{ \sf{ \:sin(x  -  y) = sinxcosy  -  sinycosx}}

\boxed{ \sf{ \:cos(x + y) = cosxcosy - sinxsiny}}

\boxed{ \sf{ \:cos(x  -  y) = cosxcosy  +  sinxsiny}}

\boxed{ \sf{ \:tan(x  + y) =  \frac{tanx  +  tany}{1  -  tanxtany}}}

Similar questions